A~multiwave transmission line with random non-homogeneities and a~Brownian movement in Siegel's circle
Teoriâ veroâtnostej i ee primeneniâ, Tome 15 (1970) no. 2, pp. 291-303
Voir la notice de l'article provenant de la source Math-Net.Ru
A multiwave transmission line without loses is considered. After a similarity transformation of the matrix coefficient of reflection, it becomes a point of the classical matrix, domain of the first kind, in other words, Siegel's circle.
A transmission along the transmission line leads to a linear fractional transformation of Siegel's circle onto itself. A diffusion equation for a random walk corresponding to these transformations in Siegel's circle is obtained. The invariance of the diffusuion equation enables to study the statistics of the random distance from zero matrix to a walkingspoint of Siegel's circle.
@article{TVP_1970_15_2_a8,
author = {M. H. Zakhar-Itkin},
title = {A~multiwave transmission line with random non-homogeneities and {a~Brownian} movement in {Siegel's} circle},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {291--303},
publisher = {mathdoc},
volume = {15},
number = {2},
year = {1970},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1970_15_2_a8/}
}
TY - JOUR AU - M. H. Zakhar-Itkin TI - A~multiwave transmission line with random non-homogeneities and a~Brownian movement in Siegel's circle JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1970 SP - 291 EP - 303 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1970_15_2_a8/ LA - ru ID - TVP_1970_15_2_a8 ER -
%0 Journal Article %A M. H. Zakhar-Itkin %T A~multiwave transmission line with random non-homogeneities and a~Brownian movement in Siegel's circle %J Teoriâ veroâtnostej i ee primeneniâ %D 1970 %P 291-303 %V 15 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_1970_15_2_a8/ %G ru %F TVP_1970_15_2_a8
M. H. Zakhar-Itkin. A~multiwave transmission line with random non-homogeneities and a~Brownian movement in Siegel's circle. Teoriâ veroâtnostej i ee primeneniâ, Tome 15 (1970) no. 2, pp. 291-303. http://geodesic.mathdoc.fr/item/TVP_1970_15_2_a8/