On asymptotics of large deviation probabilities of sums~$\Sigma f(x2^n)$
Teoriâ veroâtnostej i ee primeneniâ, Tome 15 (1970) no. 2, pp. 243-253

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, large deviations in limit theorems for sums $\sum_nf(x2^n)$ where $f(t)$ satisfies a Lipschitz condition, are investigated. A result is obtained for the narrow zone $[0,o((N/\ln^2N)^{1/4})]$. For the particular case $f(t)=\{t\}$ by a special method, a result for $[0,o(\sqrt N)]$ is obtained.
@article{TVP_1970_15_2_a5,
     author = {D. A. Moskvin},
     title = {On asymptotics of large deviation probabilities of sums~$\Sigma f(x2^n)$},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {243--253},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {1970},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1970_15_2_a5/}
}
TY  - JOUR
AU  - D. A. Moskvin
TI  - On asymptotics of large deviation probabilities of sums~$\Sigma f(x2^n)$
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1970
SP  - 243
EP  - 253
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1970_15_2_a5/
LA  - ru
ID  - TVP_1970_15_2_a5
ER  - 
%0 Journal Article
%A D. A. Moskvin
%T On asymptotics of large deviation probabilities of sums~$\Sigma f(x2^n)$
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1970
%P 243-253
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1970_15_2_a5/
%G ru
%F TVP_1970_15_2_a5
D. A. Moskvin. On asymptotics of large deviation probabilities of sums~$\Sigma f(x2^n)$. Teoriâ veroâtnostej i ee primeneniâ, Tome 15 (1970) no. 2, pp. 243-253. http://geodesic.mathdoc.fr/item/TVP_1970_15_2_a5/