A~generalization of theorems due to H.~Cramer and Yu.\,V.~Linnik--V.\,P.~Skitovi\v c
Teoriâ veroâtnostej i ee primeneniâ, Tome 15 (1970) no. 2, pp. 345-350
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $B$ be a class of functions $V(x)$ with bounded variation on $(-\infty,\infty)$ satisfying the conditions:
1) $\int_{-\infty}^\infty dV(x)=1$;
2) $V(x)=\omega_1(x)-\omega_2(x)$;
where $\omega_j(x)$ are nondecreasing functions $\omega_j(x)+\omega_j(-x)=2\omega_j(0)$, $j=1,2$, and for some $\gamma>0$
$$
\operatorname{Var}\omega_2(x)|_y^\infty=O(e^{-y^{1+\gamma}}),\quad y\to\infty;
$$ 3) $\int_{-\infty}^\infty e^{yx}dV(x)\ne0,\quad-\infty$.
In the paper the following result is obtained
Theorem. If $V_1(x)$ and $V_2(x)\in B$ and $V_1*V_2=\Phi$, where $\Phi$ is a normal distribution function, then $V_1$ and $V_2$ are normal (may be degenerate).
@article{TVP_1970_15_2_a15,
author = {G. P. Chistyakov},
title = {A~generalization of theorems due to {H.~Cramer} and {Yu.\,V.~Linnik--V.\,P.~Skitovi\v} c},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {345--350},
publisher = {mathdoc},
volume = {15},
number = {2},
year = {1970},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1970_15_2_a15/}
}
TY - JOUR AU - G. P. Chistyakov TI - A~generalization of theorems due to H.~Cramer and Yu.\,V.~Linnik--V.\,P.~Skitovi\v c JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1970 SP - 345 EP - 350 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1970_15_2_a15/ LA - ru ID - TVP_1970_15_2_a15 ER -
G. P. Chistyakov. A~generalization of theorems due to H.~Cramer and Yu.\,V.~Linnik--V.\,P.~Skitovi\v c. Teoriâ veroâtnostej i ee primeneniâ, Tome 15 (1970) no. 2, pp. 345-350. http://geodesic.mathdoc.fr/item/TVP_1970_15_2_a15/