On optimal stopping rules for stochastic processes with continuous parameter
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 15 (1970) no. 2, pp. 336-344
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The main result of this note is the proof of the existence of optimal (may be, unbounded) stopping times for a process with continuous parameter. The optimal stopping rules and the corresponding maximal rewards are described in terms of some majorizing process (minimal right-continuous supermartingale).
			
            
            
            
          
        
      @article{TVP_1970_15_2_a14,
     author = {A. G. Fakeev},
     title = {On optimal stopping rules for stochastic processes with continuous parameter},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {336--344},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {1970},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1970_15_2_a14/}
}
                      
                      
                    A. G. Fakeev. On optimal stopping rules for stochastic processes with continuous parameter. Teoriâ veroâtnostej i ee primeneniâ, Tome 15 (1970) no. 2, pp. 336-344. http://geodesic.mathdoc.fr/item/TVP_1970_15_2_a14/
