On the convergence speed of distribution of maximum sums of independent random variables
Teoriâ veroâtnostej i ee primeneniâ, Tome 15 (1970) no. 2, pp. 320-325
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\xi_n$, $n=1,2,\dots,$ be a sequence of independent identically distributed random variables with $\mathbf M\xi=0$. Put $\sigma^2=\mathbf D\xi_1$, $c_3=\mathbf M|\xi_1|^3$, $S_n=\sum_{i=1}^n\xi_i$, $S_n^-=\max\limits_{1\le i\le n}S_i$, $\overline F_n(x)=\mathbf P(\overline S_n. The following estimate is obtained: there exists an absolute constant $K$ such that $$ \sup_{0\le x<\infty}|\overline F_n(x\sigma\sqrt n)-\biggl(\frac2\pi\biggr)^{1/2}\int_0^xe^{-u^{2/3}}\,du|<K\frac{c_3^2}{\sigma^6\sqrt n}. $$
@article{TVP_1970_15_2_a11,
author = {S. V. Nagaev},
title = {On the convergence speed of distribution of maximum sums of independent random variables},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {320--325},
year = {1970},
volume = {15},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1970_15_2_a11/}
}
S. V. Nagaev. On the convergence speed of distribution of maximum sums of independent random variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 15 (1970) no. 2, pp. 320-325. http://geodesic.mathdoc.fr/item/TVP_1970_15_2_a11/