Carleman's classes for stationary processes
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 15 (1970) no. 1, pp. 116-119
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The main result of the present paper consists in demonstration of the fact that sample functions of a stationary stochastic process belong, with probability one, to Carleman's class $С\{m_n\}$, if the correlation function of the process belongs to the same class, and if 
$$
0=\inf_y\biggl\{y\colon\varlimsup_{n\to\infty}\frac{m_{2n}}{m^2_ny^{2n}}=0\biggr\}\infty 
$$ For processes satisfying the conditions 
$$
\varliminf_{n\to\infty}\mathbf P\{(\xi^{(n)}(0))^2>\mathbf M(\xi^{(n)}(0))^2\}>0,\quad1\frac{m_n}{m_{n-1}}^w,
$$
where $V$ and $w$ are positive constants, the converse assertion is proved to be also true.
			
            
            
            
          
        
      @article{TVP_1970_15_1_a9,
     author = {S. A. Ivankov},
     title = {Carleman's classes for stationary processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {116--119},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {1970},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1970_15_1_a9/}
}
                      
                      
                    S. A. Ivankov. Carleman's classes for stationary processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 15 (1970) no. 1, pp. 116-119. http://geodesic.mathdoc.fr/item/TVP_1970_15_1_a9/
