Carleman's classes for stationary processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 15 (1970) no. 1, pp. 116-119
Cet article a éte moissonné depuis la source Math-Net.Ru
The main result of the present paper consists in demonstration of the fact that sample functions of a stationary stochastic process belong, with probability one, to Carleman's class $С\{m_n\}$, if the correlation function of the process belongs to the same class, and if $$ 0<D=\inf_y\biggl\{y\colon\varlimsup_{n\to\infty}\frac{m_{2n}}{m^2_ny^{2n}}=0\biggr\}<\infty $$ For processes satisfying the conditions $$ \varliminf_{n\to\infty}\mathbf P\{(\xi^{(n)}(0))^2>\mathbf M(\xi^{(n)}(0))^2\}>0,\quad1<\frac{m_n}{m_{n-1}}<Vn^w, $$ where $V$ and $w$ are positive constants, the converse assertion is proved to be also true.
@article{TVP_1970_15_1_a9,
author = {S. A. Ivankov},
title = {Carleman's classes for stationary processes},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {116--119},
year = {1970},
volume = {15},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1970_15_1_a9/}
}
S. A. Ivankov. Carleman's classes for stationary processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 15 (1970) no. 1, pp. 116-119. http://geodesic.mathdoc.fr/item/TVP_1970_15_1_a9/