Carleman's classes for stationary processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 15 (1970) no. 1, pp. 116-119

Voir la notice de l'article provenant de la source Math-Net.Ru

The main result of the present paper consists in demonstration of the fact that sample functions of a stationary stochastic process belong, with probability one, to Carleman's class $С\{m_n\}$, if the correlation function of the process belongs to the same class, and if $$ 0=\inf_y\biggl\{y\colon\varlimsup_{n\to\infty}\frac{m_{2n}}{m^2_ny^{2n}}=0\biggr\}\infty $$ For processes satisfying the conditions $$ \varliminf_{n\to\infty}\mathbf P\{(\xi^{(n)}(0))^2>\mathbf M(\xi^{(n)}(0))^2\}>0,\quad1\frac{m_n}{m_{n-1}}^w, $$ where $V$ and $w$ are positive constants, the converse assertion is proved to be also true.
@article{TVP_1970_15_1_a9,
     author = {S. A. Ivankov},
     title = {Carleman's classes for stationary processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {116--119},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {1970},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1970_15_1_a9/}
}
TY  - JOUR
AU  - S. A. Ivankov
TI  - Carleman's classes for stationary processes
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1970
SP  - 116
EP  - 119
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1970_15_1_a9/
LA  - ru
ID  - TVP_1970_15_1_a9
ER  - 
%0 Journal Article
%A S. A. Ivankov
%T Carleman's classes for stationary processes
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1970
%P 116-119
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1970_15_1_a9/
%G ru
%F TVP_1970_15_1_a9
S. A. Ivankov. Carleman's classes for stationary processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 15 (1970) no. 1, pp. 116-119. http://geodesic.mathdoc.fr/item/TVP_1970_15_1_a9/