On the probability of connectedness of a~graph~$\mathscr G_m(t)$
Teoriâ veroâtnostej i ee primeneniâ, Tome 15 (1970) no. 1, pp. 56-68
Voir la notice de l'article provenant de la source Math-Net.Ru
In the previous paper of the author, it was shown that the probability of connectedness $P_m(t)$ of a random graph $\mathscr G_m(t)$ tends to exp $(-e^{-x})$ as $m\to\infty$ and $t=(\ln m+x+o(1))/m$.
In the present paper, an asymptotic expression of probability $P_m(t)$ is found in a wider range. It is proved that
$$
P_m(t)=\biggl(1-\frac{mt}{e^{mt}-1}\biggr)(1-e^{-mt})^m(1+o(1))
$$
uniformly in $t$ as $m\to\infty$ and $mt\ge y_0>0$. Based on this result, we prove that the distribution of the number of vertices in the greatest component of the graph $\mathscr G_m(t)$ is asymptotically normal as $m\to\infty$ and $mt>1$.
@article{TVP_1970_15_1_a3,
author = {V. E. Stepanov},
title = {On the probability of connectedness of a~graph~$\mathscr G_m(t)$},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {56--68},
publisher = {mathdoc},
volume = {15},
number = {1},
year = {1970},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1970_15_1_a3/}
}
V. E. Stepanov. On the probability of connectedness of a~graph~$\mathscr G_m(t)$. Teoriâ veroâtnostej i ee primeneniâ, Tome 15 (1970) no. 1, pp. 56-68. http://geodesic.mathdoc.fr/item/TVP_1970_15_1_a3/