On the probability of connectedness of a~graph~$\mathscr G_m(t)$
Teoriâ veroâtnostej i ee primeneniâ, Tome 15 (1970) no. 1, pp. 56-68

Voir la notice de l'article provenant de la source Math-Net.Ru

In the previous paper of the author, it was shown that the probability of connectedness $P_m(t)$ of a random graph $\mathscr G_m(t)$ tends to exp $(-e^{-x})$ as $m\to\infty$ and $t=(\ln m+x+o(1))/m$. In the present paper, an asymptotic expression of probability $P_m(t)$ is found in a wider range. It is proved that $$ P_m(t)=\biggl(1-\frac{mt}{e^{mt}-1}\biggr)(1-e^{-mt})^m(1+o(1)) $$ uniformly in $t$ as $m\to\infty$ and $mt\ge y_0>0$. Based on this result, we prove that the distribution of the number of vertices in the greatest component of the graph $\mathscr G_m(t)$ is asymptotically normal as $m\to\infty$ and $mt>1$.
@article{TVP_1970_15_1_a3,
     author = {V. E. Stepanov},
     title = {On the probability of connectedness of a~graph~$\mathscr G_m(t)$},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {56--68},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {1970},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1970_15_1_a3/}
}
TY  - JOUR
AU  - V. E. Stepanov
TI  - On the probability of connectedness of a~graph~$\mathscr G_m(t)$
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1970
SP  - 56
EP  - 68
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1970_15_1_a3/
LA  - ru
ID  - TVP_1970_15_1_a3
ER  - 
%0 Journal Article
%A V. E. Stepanov
%T On the probability of connectedness of a~graph~$\mathscr G_m(t)$
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1970
%P 56-68
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1970_15_1_a3/
%G ru
%F TVP_1970_15_1_a3
V. E. Stepanov. On the probability of connectedness of a~graph~$\mathscr G_m(t)$. Teoriâ veroâtnostej i ee primeneniâ, Tome 15 (1970) no. 1, pp. 56-68. http://geodesic.mathdoc.fr/item/TVP_1970_15_1_a3/