On approximate solution of stochastic differential equations with retarded argument
Teoriâ veroâtnostej i ee primeneniâ, Tome 15 (1970) no. 1, pp. 145-148 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In a separable Hilbert space the stochastic differential equation $$ dx(t)=\{Ax(t)+K[t,x(t),x(t-\tau)]\}\,dt+\int_\Lambda F[t,\beta,x(t),x(t-\tau)]w(dt\times d\beta) $$ with the initial condition $$ x(t)=\varphi(t),\quad-\tau\le t\le0 $$ is given. Here: $\Lambda$ is a measurable space with a measure $\nu(d\beta)$ on the $\sigma$-algebra of measurable sets; $w(dt\times d\beta)$ is a Wiener stochastic measure on $[0,l]\times\Lambda$, satisfying the conditions 1–3; $A$ is a negative determined self-adjoint operator with a dense domain; the operators $K$ and $F$ satisfy the conditions \begin{gather*} \|K[t,x,u]-K[t,y,v]\|^2\le N[\|x-y\|^2+\|u-v\|^2], \\ \int_\Lambda\|F[t,\beta,x(t),x(t-\tau)]-F[t,\beta,y(t),y(t-\tau)]\|^2\nu(d\beta)\le N[\|x(t)-y(t)\|^2+ \\ +\|x(t-\tau)-y(t-\tau)\|^2]. \end{gather*} In the paper, convergence of Galërkin's approximations is proved.
@article{TVP_1970_15_1_a16,
     author = {T. A. Zamanov},
     title = {On approximate solution of stochastic differential equations with retarded argument},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {145--148},
     year = {1970},
     volume = {15},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1970_15_1_a16/}
}
TY  - JOUR
AU  - T. A. Zamanov
TI  - On approximate solution of stochastic differential equations with retarded argument
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1970
SP  - 145
EP  - 148
VL  - 15
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_1970_15_1_a16/
LA  - ru
ID  - TVP_1970_15_1_a16
ER  - 
%0 Journal Article
%A T. A. Zamanov
%T On approximate solution of stochastic differential equations with retarded argument
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1970
%P 145-148
%V 15
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_1970_15_1_a16/
%G ru
%F TVP_1970_15_1_a16
T. A. Zamanov. On approximate solution of stochastic differential equations with retarded argument. Teoriâ veroâtnostej i ee primeneniâ, Tome 15 (1970) no. 1, pp. 145-148. http://geodesic.mathdoc.fr/item/TVP_1970_15_1_a16/