Remarks on non-parametric estimates of density functions and regression curves
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 15 (1970) no. 1, pp. 139-142
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In the present paper, sufficient conditions for $\sup\limits_{-\infty$ and $\sup\limits_{(x,y)\in\mathbf R_2}|f_n(x,y)-f(x,y)|\to0$ as $n\to\infty$ with probability 1 are found, where $\widetilde y_n(x)$ and $f_n(x,y)$ are given by (1) and (12) respectively, $y(x)$ is the regression curve of $Y$ on $X$, and $f(x,y)$ is their two-dimensional density function.
			
            
            
            
          
        
      @article{TVP_1970_15_1_a14,
     author = {\`E. A. Nadaraya},
     title = {Remarks on non-parametric estimates of density functions and regression curves},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {139--142},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {1970},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1970_15_1_a14/}
}
                      
                      
                    TY - JOUR AU - È. A. Nadaraya TI - Remarks on non-parametric estimates of density functions and regression curves JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1970 SP - 139 EP - 142 VL - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1970_15_1_a14/ LA - ru ID - TVP_1970_15_1_a14 ER -
È. A. Nadaraya. Remarks on non-parametric estimates of density functions and regression curves. Teoriâ veroâtnostej i ee primeneniâ, Tome 15 (1970) no. 1, pp. 139-142. http://geodesic.mathdoc.fr/item/TVP_1970_15_1_a14/
