On an unbiased estimate with the minimal variance in the class of linear estimates
Teoriâ veroâtnostej i ee primeneniâ, Tome 15 (1970) no. 1, pp. 136-138

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers a stochastic process $\xi(t)$ on $[a,b]$ with an unknown mean $m$ and a known correlation function $r(s,t)$. An unbiased estimate for $m$ with the minimal variance in the class of linear estimates is to be found. Using (3), the sequence (5) which converges in mean to the desired estimate is constructed.
@article{TVP_1970_15_1_a13,
     author = {D. Shagdar},
     title = {On an unbiased estimate with the minimal variance in the class of linear estimates},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {136--138},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {1970},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1970_15_1_a13/}
}
TY  - JOUR
AU  - D. Shagdar
TI  - On an unbiased estimate with the minimal variance in the class of linear estimates
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1970
SP  - 136
EP  - 138
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1970_15_1_a13/
LA  - ru
ID  - TVP_1970_15_1_a13
ER  - 
%0 Journal Article
%A D. Shagdar
%T On an unbiased estimate with the minimal variance in the class of linear estimates
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1970
%P 136-138
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1970_15_1_a13/
%G ru
%F TVP_1970_15_1_a13
D. Shagdar. On an unbiased estimate with the minimal variance in the class of linear estimates. Teoriâ veroâtnostej i ee primeneniâ, Tome 15 (1970) no. 1, pp. 136-138. http://geodesic.mathdoc.fr/item/TVP_1970_15_1_a13/