Maximum likelihood estimator in the case of simplest grouping of data
Teoriâ veroâtnostej i ee primeneniâ, Tome 15 (1970) no. 1, pp. 132-136

Voir la notice de l'article provenant de la source Math-Net.Ru

Maximum likelihood estimators from $k$ samples are considered for the location parameter $\nu$ and the scale parameter $\sigma$, each of the samples being grouped in a simplest way. For the class of distribution functions under consideration, the necessary and sufficient conditions for the existence and uniqueness of the maximum likelihood equations' solution are derived. It is proved also that this solution is the absolute maximum of the maximum likelihood function.
@article{TVP_1970_15_1_a12,
     author = {V. P. Artamonovskii and Kh. B. Kordonskii},
     title = {Maximum likelihood estimator in the case of simplest grouping of data},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {132--136},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {1970},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1970_15_1_a12/}
}
TY  - JOUR
AU  - V. P. Artamonovskii
AU  - Kh. B. Kordonskii
TI  - Maximum likelihood estimator in the case of simplest grouping of data
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1970
SP  - 132
EP  - 136
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1970_15_1_a12/
LA  - ru
ID  - TVP_1970_15_1_a12
ER  - 
%0 Journal Article
%A V. P. Artamonovskii
%A Kh. B. Kordonskii
%T Maximum likelihood estimator in the case of simplest grouping of data
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1970
%P 132-136
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1970_15_1_a12/
%G ru
%F TVP_1970_15_1_a12
V. P. Artamonovskii; Kh. B. Kordonskii. Maximum likelihood estimator in the case of simplest grouping of data. Teoriâ veroâtnostej i ee primeneniâ, Tome 15 (1970) no. 1, pp. 132-136. http://geodesic.mathdoc.fr/item/TVP_1970_15_1_a12/