Maximum likelihood estimator in the case of simplest grouping of data
Teoriâ veroâtnostej i ee primeneniâ, Tome 15 (1970) no. 1, pp. 132-136
Voir la notice de l'article provenant de la source Math-Net.Ru
Maximum likelihood estimators from $k$ samples are considered for the location parameter $\nu$ and the scale parameter $\sigma$, each of the samples being grouped in a simplest way. For the class of distribution functions under consideration, the necessary and sufficient conditions for the existence and uniqueness of the maximum likelihood equations' solution are derived. It is proved also that this solution is the absolute maximum of the maximum likelihood function.
@article{TVP_1970_15_1_a12,
author = {V. P. Artamonovskii and Kh. B. Kordonskii},
title = {Maximum likelihood estimator in the case of simplest grouping of data},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {132--136},
publisher = {mathdoc},
volume = {15},
number = {1},
year = {1970},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1970_15_1_a12/}
}
TY - JOUR AU - V. P. Artamonovskii AU - Kh. B. Kordonskii TI - Maximum likelihood estimator in the case of simplest grouping of data JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1970 SP - 132 EP - 136 VL - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1970_15_1_a12/ LA - ru ID - TVP_1970_15_1_a12 ER -
V. P. Artamonovskii; Kh. B. Kordonskii. Maximum likelihood estimator in the case of simplest grouping of data. Teoriâ veroâtnostej i ee primeneniâ, Tome 15 (1970) no. 1, pp. 132-136. http://geodesic.mathdoc.fr/item/TVP_1970_15_1_a12/