On the stability of decompositions of the unit distribution function
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 14 (1969) no. 4, pp. 715-718
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $E$ be the unit distribution function
$$
E(x)=
\begin{cases}
0,\le0
\\
1,>0
\end{cases}
$$
and $F=F_1*F_2$ be a distribution function such that in the uniform metric
$$
\rho(F,E)\le\varepsilon\le1/4.
$$
Let $F_1$ have median 0. We show that
$$
\rho(F_1,E)\le\frac{1-\sqrt{1-4\varepsilon}}2.
$$
and this estimate can not be improved.
			
            
            
            
          
        
      @article{TVP_1969_14_4_a9,
     author = {J. Macys},
     title = {On the stability of decompositions of the unit distribution function},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {715--718},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {1969},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1969_14_4_a9/}
}
                      
                      
                    J. Macys. On the stability of decompositions of the unit distribution function. Teoriâ veroâtnostej i ee primeneniâ, Tome 14 (1969) no. 4, pp. 715-718. http://geodesic.mathdoc.fr/item/TVP_1969_14_4_a9/
