Limit distributions of certain characteristics of random mappings
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 14 (1969) no. 4, pp. 639-653
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A random mapping of a set $X_n$ of $n$ elements into $X_n$ being under consideration, the distributions of its various characteristics such as the number of components, the number of points of different orders, the number of trees of one or another size etc. are studied. Here is a typical example of the results obtained: let $\zeta^{(n)}(s)$ be the number of points, the order of which is greater than $s$ and $n^{-1/2}s\to\alpha$, $0\alpha\infty$, as $n\to\infty$; then the random variable $n^{-1/2}\zeta^{(n)}(s)$ has the limit distribution with the Laplace transform $\Psi_\alpha(t)$ defined by
$$
\Psi_\alpha(t)=\sqrt{2\pi}\frac1{2\pi i}\int_{1-i\infty}^{1+i\infty}\exp\{E(\alpha\sqrt{p^2+2t})-E(\alpha p)\}\cdot e^{p^2/2}\,dp
$$
where $E(p)=\int_p^\infty x^{-1}e^{-x}\,dx$.
			
            
            
            
          
        
      @article{TVP_1969_14_4_a3,
     author = {V. E. Stepanov},
     title = {Limit distributions of certain characteristics of random mappings},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {639--653},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {1969},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1969_14_4_a3/}
}
                      
                      
                    V. E. Stepanov. Limit distributions of certain characteristics of random mappings. Teoriâ veroâtnostej i ee primeneniâ, Tome 14 (1969) no. 4, pp. 639-653. http://geodesic.mathdoc.fr/item/TVP_1969_14_4_a3/
