Limit distributions of certain characteristics of random mappings
Teoriâ veroâtnostej i ee primeneniâ, Tome 14 (1969) no. 4, pp. 639-653

Voir la notice de l'article provenant de la source Math-Net.Ru

A random mapping of a set $X_n$ of $n$ elements into $X_n$ being under consideration, the distributions of its various characteristics such as the number of components, the number of points of different orders, the number of trees of one or another size etc. are studied. Here is a typical example of the results obtained: let $\zeta^{(n)}(s)$ be the number of points, the order of which is greater than $s$ and $n^{-1/2}s\to\alpha$, $0\alpha\infty$, as $n\to\infty$; then the random variable $n^{-1/2}\zeta^{(n)}(s)$ has the limit distribution with the Laplace transform $\Psi_\alpha(t)$ defined by $$ \Psi_\alpha(t)=\sqrt{2\pi}\frac1{2\pi i}\int_{1-i\infty}^{1+i\infty}\exp\{E(\alpha\sqrt{p^2+2t})-E(\alpha p)\}\cdot e^{p^2/2}\,dp $$ where $E(p)=\int_p^\infty x^{-1}e^{-x}\,dx$.
@article{TVP_1969_14_4_a3,
     author = {V. E. Stepanov},
     title = {Limit distributions of certain characteristics of random mappings},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {639--653},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {1969},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1969_14_4_a3/}
}
TY  - JOUR
AU  - V. E. Stepanov
TI  - Limit distributions of certain characteristics of random mappings
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1969
SP  - 639
EP  - 653
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1969_14_4_a3/
LA  - ru
ID  - TVP_1969_14_4_a3
ER  - 
%0 Journal Article
%A V. E. Stepanov
%T Limit distributions of certain characteristics of random mappings
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1969
%P 639-653
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1969_14_4_a3/
%G ru
%F TVP_1969_14_4_a3
V. E. Stepanov. Limit distributions of certain characteristics of random mappings. Teoriâ veroâtnostej i ee primeneniâ, Tome 14 (1969) no. 4, pp. 639-653. http://geodesic.mathdoc.fr/item/TVP_1969_14_4_a3/