Oh a game connected with a Wiener process
Teoriâ veroâtnostej i ee primeneniâ, Tome 14 (1969) no. 4, pp. 732-735
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper, the following zero-sum game is considered. Two persons are observing a trajectory of a Wiener process in a bounded closed region $E$ with absorbing boundary in a Euclidean $n$-space. One of the players may interrupt the process in a closed region $E_1$ the other in $E_2$. If the process is stopped in a point $x$, then the first player pays to the second one payment $g(x)$. The existence of the payoff function and minimax strategies is proved.
@article{TVP_1969_14_4_a13,
author = {S. M. Gusein-Zade},
title = {Oh a~game connected with {a~Wiener} process},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {732--735},
year = {1969},
volume = {14},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1969_14_4_a13/}
}
S. M. Gusein-Zade. Oh a game connected with a Wiener process. Teoriâ veroâtnostej i ee primeneniâ, Tome 14 (1969) no. 4, pp. 732-735. http://geodesic.mathdoc.fr/item/TVP_1969_14_4_a13/