On a L. Schwartz problem and on realization of $l_p$-spaces by spaces of random variables
Teoriâ veroâtnostej i ee primeneniâ, Tome 14 (1969) no. 4, pp. 729-731
Cet article a éte moissonné depuis la source Math-Net.Ru
Urbanyk and Woyczinski have shown that $l_p$-spaces, $p\le2$, may be realized by spaces of random variables [1]. In the present paper, we prove that such realization is impossible for $l_p$-spaces with $p>2$ and for $c_0$-space. We prove also the L. Schwartz hypothesis: if the series $X_n$ of random variables diverges in measure then there exists a sequence $\{\alpha_n\}\in R$ with $\lim\alpha_n=0$ such that $\Sigma\alpha_nX_n$ diverges in measure.
@article{TVP_1969_14_4_a12,
author = {D. Kh. Mushtari},
title = {On {a~L.~Schwartz} problem and on realization of $l_p$-spaces by spaces of random variables},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {729--731},
year = {1969},
volume = {14},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1969_14_4_a12/}
}
TY - JOUR AU - D. Kh. Mushtari TI - On a L. Schwartz problem and on realization of $l_p$-spaces by spaces of random variables JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1969 SP - 729 EP - 731 VL - 14 IS - 4 UR - http://geodesic.mathdoc.fr/item/TVP_1969_14_4_a12/ LA - ru ID - TVP_1969_14_4_a12 ER -
D. Kh. Mushtari. On a L. Schwartz problem and on realization of $l_p$-spaces by spaces of random variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 14 (1969) no. 4, pp. 729-731. http://geodesic.mathdoc.fr/item/TVP_1969_14_4_a12/