Asymptotic expansions of the distribution functions of the sums of independent equally distributed lattice random vectors
Teoriâ veroâtnostej i ee primeneniâ, Tome 14 (1969) no. 3, pp. 499-507
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $$ S_n=\frac1{\sqrt n}\sum_{j=1}^n(\xi_j-\mathbf M\xi_j) $$ be the normalized sum of independent equally distributed lattice random vectors $\xi_1,\xi_2,\dots,\xi_n$. In this paper, asymptotic expansions of the probability function $P_n(A)$, $A$ being a Borel set, of $S_n$ are considered.
@article{TVP_1969_14_3_a8,
author = {A. Bikelis},
title = {Asymptotic expansions of the distribution functions of the sums of independent equally distributed lattice random vectors},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {499--507},
year = {1969},
volume = {14},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1969_14_3_a8/}
}
TY - JOUR AU - A. Bikelis TI - Asymptotic expansions of the distribution functions of the sums of independent equally distributed lattice random vectors JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1969 SP - 499 EP - 507 VL - 14 IS - 3 UR - http://geodesic.mathdoc.fr/item/TVP_1969_14_3_a8/ LA - ru ID - TVP_1969_14_3_a8 ER -
%0 Journal Article %A A. Bikelis %T Asymptotic expansions of the distribution functions of the sums of independent equally distributed lattice random vectors %J Teoriâ veroâtnostej i ee primeneniâ %D 1969 %P 499-507 %V 14 %N 3 %U http://geodesic.mathdoc.fr/item/TVP_1969_14_3_a8/ %G ru %F TVP_1969_14_3_a8
A. Bikelis. Asymptotic expansions of the distribution functions of the sums of independent equally distributed lattice random vectors. Teoriâ veroâtnostej i ee primeneniâ, Tome 14 (1969) no. 3, pp. 499-507. http://geodesic.mathdoc.fr/item/TVP_1969_14_3_a8/