A~stochastic integral for a~Gaussian process
Teoriâ veroâtnostej i ee primeneniâ, Tome 14 (1969) no. 2, pp. 370-372

Voir la notice de l'article provenant de la source Math-Net.Ru

A stochastic integral of the form $$ \int_0^Tf(y(\tau))\,dx(\tau) $$ where $x(\tau)$, $y(\tau)$ are Gaussian processes, is defined, its existence for a class of functions $f$ being proved.
@article{TVP_1969_14_2_a20,
     author = {E. A. Begovatov},
     title = {A~stochastic integral for {a~Gaussian} process},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {370--372},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {1969},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1969_14_2_a20/}
}
TY  - JOUR
AU  - E. A. Begovatov
TI  - A~stochastic integral for a~Gaussian process
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1969
SP  - 370
EP  - 372
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1969_14_2_a20/
LA  - ru
ID  - TVP_1969_14_2_a20
ER  - 
%0 Journal Article
%A E. A. Begovatov
%T A~stochastic integral for a~Gaussian process
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1969
%P 370-372
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1969_14_2_a20/
%G ru
%F TVP_1969_14_2_a20
E. A. Begovatov. A~stochastic integral for a~Gaussian process. Teoriâ veroâtnostej i ee primeneniâ, Tome 14 (1969) no. 2, pp. 370-372. http://geodesic.mathdoc.fr/item/TVP_1969_14_2_a20/