An asymptotic estimate of the probability for a~Gaussian stochastic process to remain under the straight line $kt+a$
Teoriâ veroâtnostej i ee primeneniâ, Tome 14 (1969) no. 2, pp. 363-369

Voir la notice de l'article provenant de la source Math-Net.Ru

A stationary Gaussian stochastic process with the correlation function of the form (1) or (6) for $\tau\sim+0$ is considered, asymptotic inequalities (theorems 1–6) for the function (2) with $\alpha\sim+0$, $a\ge0$ or $\gamma_0\to+\infty$, $\alpha=\mathrm{const}$ (cf. (3)) being obtained.
@article{TVP_1969_14_2_a19,
     author = {R. N. Miroshin},
     title = {An asymptotic estimate of the probability for {a~Gaussian} stochastic process to remain under the straight line $kt+a$},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {363--369},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {1969},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1969_14_2_a19/}
}
TY  - JOUR
AU  - R. N. Miroshin
TI  - An asymptotic estimate of the probability for a~Gaussian stochastic process to remain under the straight line $kt+a$
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1969
SP  - 363
EP  - 369
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1969_14_2_a19/
LA  - ru
ID  - TVP_1969_14_2_a19
ER  - 
%0 Journal Article
%A R. N. Miroshin
%T An asymptotic estimate of the probability for a~Gaussian stochastic process to remain under the straight line $kt+a$
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1969
%P 363-369
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1969_14_2_a19/
%G ru
%F TVP_1969_14_2_a19
R. N. Miroshin. An asymptotic estimate of the probability for a~Gaussian stochastic process to remain under the straight line $kt+a$. Teoriâ veroâtnostej i ee primeneniâ, Tome 14 (1969) no. 2, pp. 363-369. http://geodesic.mathdoc.fr/item/TVP_1969_14_2_a19/