The probability distribution of the area bounded by a~Gaussian random contour
Teoriâ veroâtnostej i ee primeneniâ, Tome 14 (1969) no. 2, pp. 357-363

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\rho_i=(\rho_i^1,\rho_i^2)$, $i=1,\dots,N$, be two-dimensional Gaussian random variables with $\mathbf M\rho_i=(r\cos\varphi_i,r\sin\varphi_i)$, $\operatorname{cov}(\rho_i^\alpha,\rho_i^\beta)=\delta_{\alpha\beta}\biggl(4r^2\sin^2\frac{\varphi_i-\varphi_j}2\biggr)$, where $r$ is constant, $0\le\varphi_1\dots\varphi_N2\pi$, and $g$ is a real function. Let $S_N$ be the area bounded by the broken line passing through the points $\rho_1,\dots,\rho_N$. In the paper, the distribution of $S=\lim\limits_{N\to\infty}S_N$ is studied.
@article{TVP_1969_14_2_a18,
     author = {V. I. Klyatskin and V. I. Tatarskii},
     title = {The probability distribution of the area bounded by {a~Gaussian} random contour},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {357--363},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {1969},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1969_14_2_a18/}
}
TY  - JOUR
AU  - V. I. Klyatskin
AU  - V. I. Tatarskii
TI  - The probability distribution of the area bounded by a~Gaussian random contour
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1969
SP  - 357
EP  - 363
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1969_14_2_a18/
LA  - ru
ID  - TVP_1969_14_2_a18
ER  - 
%0 Journal Article
%A V. I. Klyatskin
%A V. I. Tatarskii
%T The probability distribution of the area bounded by a~Gaussian random contour
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1969
%P 357-363
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1969_14_2_a18/
%G ru
%F TVP_1969_14_2_a18
V. I. Klyatskin; V. I. Tatarskii. The probability distribution of the area bounded by a~Gaussian random contour. Teoriâ veroâtnostej i ee primeneniâ, Tome 14 (1969) no. 2, pp. 357-363. http://geodesic.mathdoc.fr/item/TVP_1969_14_2_a18/