Some explicit formulas in the theory of branching stochastic processes with discrete time and one-type particles
Teoriâ veroâtnostej i ee primeneniâ, Tome 14 (1969) no. 2, pp. 348-354
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $Z_0=1$, $Z_n$, $n=1,2,\dots,$ be the number of particles belonging to the $n$-th generation of a Halton–Watson branching process, $p_{nr}=\mathbf P\{Z_n=r\}$ and $F_n(z)=\sum_{r\ge0}p_{nr}z^r$. It is supposed that $m=\mathbf EZ_1\ne1$ and $F(z)=F_1(z)$ be regular at the point $z=1$ for $m<1$. In the paper some formulas and an asymptotic expansion for the probabilities $p_{nr}$ are obtained.
@article{TVP_1969_14_2_a16,
author = {B. I. Selivanov},
title = {Some explicit formulas in the theory of branching stochastic processes with discrete time and one-type particles},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {348--354},
year = {1969},
volume = {14},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1969_14_2_a16/}
}
TY - JOUR AU - B. I. Selivanov TI - Some explicit formulas in the theory of branching stochastic processes with discrete time and one-type particles JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1969 SP - 348 EP - 354 VL - 14 IS - 2 UR - http://geodesic.mathdoc.fr/item/TVP_1969_14_2_a16/ LA - ru ID - TVP_1969_14_2_a16 ER -
%0 Journal Article %A B. I. Selivanov %T Some explicit formulas in the theory of branching stochastic processes with discrete time and one-type particles %J Teoriâ veroâtnostej i ee primeneniâ %D 1969 %P 348-354 %V 14 %N 2 %U http://geodesic.mathdoc.fr/item/TVP_1969_14_2_a16/ %G ru %F TVP_1969_14_2_a16
B. I. Selivanov. Some explicit formulas in the theory of branching stochastic processes with discrete time and one-type particles. Teoriâ veroâtnostej i ee primeneniâ, Tome 14 (1969) no. 2, pp. 348-354. http://geodesic.mathdoc.fr/item/TVP_1969_14_2_a16/