On the number of observations requir ed for testing hypotheses of the binomial distribution parameter
Teoriâ veroâtnostej i ee primeneniâ, Tome 14 (1969) no. 2, pp. 327-332
Voir la notice de l'article provenant de la source Math-Net.Ru
The testing procedure for the binomial scheme with constant success probability $p$ being considered, the hypotheses to be tested are $H_0\colon p=p_0$ and $H_1\colon p=p_1$, $p_1>p_0$. Two methods are presented to estimate the number of observations required for testing $H_0$ against $H_1$ by means of the most powerful nonrandomized test at given first $(\varepsilon)$ and second kind $(\omega)$ error probabilities. The first method gives an interval estimate, i.e. a closed interval with integer end points, which, for fixed $p_0$, $\varepsilon$ and $\omega$ and all $p_1$'s sufficiently close to $p_0$, will contain the exact number of observations required. The second method provides a point estimate of the number of observations required and the corresponding critical constant. As the calculations show, these estimates are extiremely accurate for $\varepsilon$ and $\omega$ close to 0.05–0.1 and $p_0\le0.08$. Yet, the author can draw no final conclusion about the accuracy of the estimates.
@article{TVP_1969_14_2_a13,
author = {I. N. Volodin},
title = {On the number of observations requir ed for testing hypotheses of the binomial distribution parameter},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {327--332},
publisher = {mathdoc},
volume = {14},
number = {2},
year = {1969},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1969_14_2_a13/}
}
TY - JOUR AU - I. N. Volodin TI - On the number of observations requir ed for testing hypotheses of the binomial distribution parameter JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1969 SP - 327 EP - 332 VL - 14 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1969_14_2_a13/ LA - ru ID - TVP_1969_14_2_a13 ER -
%0 Journal Article %A I. N. Volodin %T On the number of observations requir ed for testing hypotheses of the binomial distribution parameter %J Teoriâ veroâtnostej i ee primeneniâ %D 1969 %P 327-332 %V 14 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_1969_14_2_a13/ %G ru %F TVP_1969_14_2_a13
I. N. Volodin. On the number of observations requir ed for testing hypotheses of the binomial distribution parameter. Teoriâ veroâtnostej i ee primeneniâ, Tome 14 (1969) no. 2, pp. 327-332. http://geodesic.mathdoc.fr/item/TVP_1969_14_2_a13/