On the distribution of the number of vertices in strata of a random tree
Teoriâ veroâtnostej i ee primeneniâ, Tome 14 (1969) no. 1, pp. 64-77 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The set of trees with $m+1$ distinguishable vertices one of which is taken as a root is considered. In every tree all the vertices are distributed in strata with respect to the root according to the lengths of paths which connect them to the root. Let $\zeta_{m,j}$ be the number of vertices in the $j$-th stratum of a tree chosen at random. We prove that if $m$ and $j\to\infty$ so that $j/\sqrt m\to\alpha$, $0<\alpha_1\le\alpha<\alpha_2<\infty$, then the distributions of random variables $\zeta_{m,j}/\sqrt m$ converge to a limit distribution. Explicit expressions for moments and the density of the limit distribution are found.
@article{TVP_1969_14_1_a6,
     author = {V. E. Stepanov},
     title = {On the distribution of the number of vertices in strata of a~random tree},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {64--77},
     year = {1969},
     volume = {14},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1969_14_1_a6/}
}
TY  - JOUR
AU  - V. E. Stepanov
TI  - On the distribution of the number of vertices in strata of a random tree
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1969
SP  - 64
EP  - 77
VL  - 14
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_1969_14_1_a6/
LA  - ru
ID  - TVP_1969_14_1_a6
ER  - 
%0 Journal Article
%A V. E. Stepanov
%T On the distribution of the number of vertices in strata of a random tree
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1969
%P 64-77
%V 14
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_1969_14_1_a6/
%G ru
%F TVP_1969_14_1_a6
V. E. Stepanov. On the distribution of the number of vertices in strata of a random tree. Teoriâ veroâtnostej i ee primeneniâ, Tome 14 (1969) no. 1, pp. 64-77. http://geodesic.mathdoc.fr/item/TVP_1969_14_1_a6/