On the asymptotic efficiency of the least squares estimates of regression coefficients
Teoriâ veroâtnostej i ee primeneniâ, Tome 14 (1969) no. 1, pp. 179-180 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A process $y(t)=x(t)+aA(t)$ is considered, where $x(t)$ is a weakly stationary process with continuous parameter $t$ and $A(t)$ is a nonrandom function. Sufficient conditions for the least-squares estimate of $a$ to be asymptotically efficient ($1^\circ$$5^\circ$) are obtained.
@article{TVP_1969_14_1_a23,
     author = {T. L. Malevich},
     title = {On the asymptotic efficiency of the least squares estimates of regression coefficients},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {179--180},
     year = {1969},
     volume = {14},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1969_14_1_a23/}
}
TY  - JOUR
AU  - T. L. Malevich
TI  - On the asymptotic efficiency of the least squares estimates of regression coefficients
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1969
SP  - 179
EP  - 180
VL  - 14
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_1969_14_1_a23/
LA  - ru
ID  - TVP_1969_14_1_a23
ER  - 
%0 Journal Article
%A T. L. Malevich
%T On the asymptotic efficiency of the least squares estimates of regression coefficients
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1969
%P 179-180
%V 14
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_1969_14_1_a23/
%G ru
%F TVP_1969_14_1_a23
T. L. Malevich. On the asymptotic efficiency of the least squares estimates of regression coefficients. Teoriâ veroâtnostej i ee primeneniâ, Tome 14 (1969) no. 1, pp. 179-180. http://geodesic.mathdoc.fr/item/TVP_1969_14_1_a23/