Limits of admissibility of normal approximations for the Poisson distribution
Teoriâ veroâtnostej i ee primeneniâ, Tome 14 (1969) no. 1, pp. 175-178
Voir la notice de l'article provenant de la source Math-Net.Ru
Various normal approximations of a Poisson distribution function
$$
\mathbf P\{\mu\le m\mid a\}=\sum_{k=0}^m\frac{a^k}{k!}e^{-a}=\frac1{\Gamma(m+1)}\int_a^\infty x^me^{-x}\,dx
$$
are considered in case of large values of the parameter $a$. The least values $A(\varepsilon)$ of a for which the corresponding approximation errors do not exceed given $\varepsilon>0$ are also calculated, the results being compared with the exact values obtained with an electronic computer.
@article{TVP_1969_14_1_a22,
author = {B. I. Devyatov},
title = {Limits of admissibility of normal approximations for the {Poisson} distribution},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {175--178},
publisher = {mathdoc},
volume = {14},
number = {1},
year = {1969},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1969_14_1_a22/}
}
TY - JOUR AU - B. I. Devyatov TI - Limits of admissibility of normal approximations for the Poisson distribution JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1969 SP - 175 EP - 178 VL - 14 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1969_14_1_a22/ LA - ru ID - TVP_1969_14_1_a22 ER -
B. I. Devyatov. Limits of admissibility of normal approximations for the Poisson distribution. Teoriâ veroâtnostej i ee primeneniâ, Tome 14 (1969) no. 1, pp. 175-178. http://geodesic.mathdoc.fr/item/TVP_1969_14_1_a22/