Nonparametric estimation of a~multidimensional probability density
Teoriâ veroâtnostej i ee primeneniâ, Tome 14 (1969) no. 1, pp. 156-161

Voir la notice de l'article provenant de la source Math-Net.Ru

A sample of size $n$ from a $k$-dimensional absolutely continuous distribution being available, the function $$ f_n(x_1,\dots,x_k)=\frac1n\sum_{i=1}^n\prod_{l=1}^k\frac1{h_l(n)}K_l\biggl(\frac{x_l-x_l^{(i)}}{h_l(n)}\biggr) $$ is taken as a density function estimator, where $K_l(y)$'s are given real-valued functions symmetric with respect to $y=0$ and having bounded moments. $f_n(x_1,\dots,x_k)$ is shown to be asymptotically unbiased and consistent estimate of the probability density at each point $(x_1,\dots,x_k)$ provided that $\lim\limits_{n\to\infty}h_l(n)=0$, $\lim\limits_{n\to\infty}\prod_{l=1}^kh_l(n)\to\infty$. Optimal functions $K_l(y)$ are found which reduce the asymptotic relative total mean-square error to the minimum.
@article{TVP_1969_14_1_a18,
     author = {V. A. Epanechnikov},
     title = {Nonparametric estimation of a~multidimensional probability density},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {156--161},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {1969},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1969_14_1_a18/}
}
TY  - JOUR
AU  - V. A. Epanechnikov
TI  - Nonparametric estimation of a~multidimensional probability density
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1969
SP  - 156
EP  - 161
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1969_14_1_a18/
LA  - ru
ID  - TVP_1969_14_1_a18
ER  - 
%0 Journal Article
%A V. A. Epanechnikov
%T Nonparametric estimation of a~multidimensional probability density
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1969
%P 156-161
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1969_14_1_a18/
%G ru
%F TVP_1969_14_1_a18
V. A. Epanechnikov. Nonparametric estimation of a~multidimensional probability density. Teoriâ veroâtnostej i ee primeneniâ, Tome 14 (1969) no. 1, pp. 156-161. http://geodesic.mathdoc.fr/item/TVP_1969_14_1_a18/