Skorohod A. V. Markov processes with homogeneous second component. I.
Teoriâ veroâtnostej i ee primeneniâ, Tome 14 (1969) no. 1, pp. 3-14 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider Markov processes $z_t=\{x_t,y_t\}$ in a product space $X\times Y$ ($x_t\in X$, $y_t\in Y$), $Y$ being a finite-dimensional Euclidean space. Such a process is called a process with homogeneous second component if its transition probability function $P(t,x,y,s,A,B)$, $x\in X$, $y\in Y$, $A\subset X$, $B\subset Y$, $t, satisfies the condition $$ P(t,x,y,s,A,B)=P(t,x,0,s,A,B_{-y}), $$ where $B_{-y}$ is the set of $y'$'s such that $y+y'\in B$. In §1 we study general properties of such processes. In §2 the case is considered when $x_t$ is a process with denumerable set of states. §3 deals with time-homogeneous processes.
@article{TVP_1969_14_1_a0,
     author = {I. I. Ezhov and A. V. Skorokhod},
     title = {Skorohod {A.} {V.~Markov} processes with homogeneous second {component.~I.}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {3--14},
     year = {1969},
     volume = {14},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1969_14_1_a0/}
}
TY  - JOUR
AU  - I. I. Ezhov
AU  - A. V. Skorokhod
TI  - Skorohod A. V. Markov processes with homogeneous second component. I.
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1969
SP  - 3
EP  - 14
VL  - 14
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_1969_14_1_a0/
LA  - ru
ID  - TVP_1969_14_1_a0
ER  - 
%0 Journal Article
%A I. I. Ezhov
%A A. V. Skorokhod
%T Skorohod A. V. Markov processes with homogeneous second component. I.
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1969
%P 3-14
%V 14
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_1969_14_1_a0/
%G ru
%F TVP_1969_14_1_a0
I. I. Ezhov; A. V. Skorokhod. Skorohod A. V. Markov processes with homogeneous second component. I.. Teoriâ veroâtnostej i ee primeneniâ, Tome 14 (1969) no. 1, pp. 3-14. http://geodesic.mathdoc.fr/item/TVP_1969_14_1_a0/