Skorohod A. V. Markov processes with homogeneous second component. I.
Teoriâ veroâtnostej i ee primeneniâ, Tome 14 (1969) no. 1, pp. 3-14
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider Markov processes $z_t=\{x_t,y_t\}$ in a product space $X\times Y$ ($x_t\in X$, $y_t\in Y$), $Y$ being a finite-dimensional Euclidean space. Such a process is called a process with homogeneous second component if its transition probability function $P(t,x,y,s,A,B)$, $x\in X$, $y\in Y$, $A\subset X$, $B\subset Y$, $t, satisfies the condition $$ P(t,x,y,s,A,B)=P(t,x,0,s,A,B_{-y}), $$ where $B_{-y}$ is the set of $y'$'s such that $y+y'\in B$. In §1 we study general properties of such processes. In §2 the case is considered when $x_t$ is a process with denumerable set of states. §3 deals with time-homogeneous processes.
@article{TVP_1969_14_1_a0,
author = {I. I. Ezhov and A. V. Skorokhod},
title = {Skorohod {A.} {V.~Markov} processes with homogeneous second {component.~I.}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {3--14},
year = {1969},
volume = {14},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1969_14_1_a0/}
}
I. I. Ezhov; A. V. Skorokhod. Skorohod A. V. Markov processes with homogeneous second component. I.. Teoriâ veroâtnostej i ee primeneniâ, Tome 14 (1969) no. 1, pp. 3-14. http://geodesic.mathdoc.fr/item/TVP_1969_14_1_a0/