On the existence of exact upper sequences
Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 4, pp. 701-707 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The following results are obtained. Theorem 2. Let $\xi_1,\xi_2,\dots,\xi_n,\dots$ be a sequence of independent random variables and $$ \frac{z^2\mathbf P\{|\xi_n-\mu(\xi_n)|>z\}}{\int_{|x|\le z}x^2\,d\mathbf P\{\xi_n-\mu(\xi_n)<x\}}\ge c>0, $$ $n=1,2,\dots$, then there exists no sequence $a_1,a_2,\dots,a_n,\dots$, $a_n\uparrow\infty$ as $n\to\infty$, having the property $$ \mathbf P\biggl\{\varlimsup_{m\to\infty}\frac{|S_n-\mu(S_n)|}{a_n}=1\biggr\}=1,\eqno(*) $$ where $S_n=\sum_{k=1}^n\xi_k$ and $\mu(\eta)$ is the median of $\eta$. Theorem 4. Let $\xi_1,\xi_2,\dots,\xi_n,\dots$ be a sequence of independent equally distributed random variables, then there exists no sequence $a_1,a_2,\dots,a_n,\dots$ with the properties $(*)$ and $$ \sum_{k=n}^\infty a_k^{-2}\le Cna_n^{-2} $$ for all $n$ and $C>0$. In the end of the paper an example is constructed which gives the negative answer to the question stated in [1].
@article{TVP_1968_13_4_a8,
     author = {B. A. Rogozin},
     title = {On the existence of exact upper sequences},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {701--707},
     year = {1968},
     volume = {13},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1968_13_4_a8/}
}
TY  - JOUR
AU  - B. A. Rogozin
TI  - On the existence of exact upper sequences
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1968
SP  - 701
EP  - 707
VL  - 13
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_1968_13_4_a8/
LA  - ru
ID  - TVP_1968_13_4_a8
ER  - 
%0 Journal Article
%A B. A. Rogozin
%T On the existence of exact upper sequences
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1968
%P 701-707
%V 13
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_1968_13_4_a8/
%G ru
%F TVP_1968_13_4_a8
B. A. Rogozin. On the existence of exact upper sequences. Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 4, pp. 701-707. http://geodesic.mathdoc.fr/item/TVP_1968_13_4_a8/