On the problem of the stability of the decomposition of the normal law into components
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 4, pp. 738-742
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The following theorem is proved: Let $\Phi$ be the distribution function of $N(0,1)$, $L$ the Levy metric and $F=F_1*F_2$ a distribution function such that
$$
L(F,\Phi)\le\varepsilon1.
$$
Then, there can be found a normal distribution $\Phi_1$ such that
$$
C_1\biggl(\log\frac1\varepsilon\biggr)^{-1/2}(F_1,\Phi_1)\biggl(\log\frac1\varepsilon\biggr)^{-1/11},
$$
where $C_1$ and $C_2$ are positive constants.
			
            
            
            
          
        
      @article{TVP_1968_13_4_a14,
     author = {V. M. Zolotarev},
     title = {On the problem of the stability of the decomposition of the normal law into components},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {738--742},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1968_13_4_a14/}
}
                      
                      
                    TY - JOUR AU - V. M. Zolotarev TI - On the problem of the stability of the decomposition of the normal law into components JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1968 SP - 738 EP - 742 VL - 13 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1968_13_4_a14/ LA - ru ID - TVP_1968_13_4_a14 ER -
V. M. Zolotarev. On the problem of the stability of the decomposition of the normal law into components. Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 4, pp. 738-742. http://geodesic.mathdoc.fr/item/TVP_1968_13_4_a14/
