The significance level and power of two-sided Kolmogorov's test in case of small sample sizes
Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 4, pp. 725-730

Voir la notice de l'article provenant de la source Math-Net.Ru

Calculating $n$-dimensional ($1\le n\infty$) integrals over a domain restricted by $(n+1)$-dimensional hyperplanes, we obtain a recurrent relation for the significance level $\beta_n$ and power $P_n$ of two-sided Kolmogorov's test which can be used to get exact values of $\beta_n$ and $P_n$ in case of small sample sizes.
@article{TVP_1968_13_4_a12,
     author = {V. A. Epanechnikov},
     title = {The significance level and power of two-sided {Kolmogorov's} test in case of small sample sizes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {725--730},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1968_13_4_a12/}
}
TY  - JOUR
AU  - V. A. Epanechnikov
TI  - The significance level and power of two-sided Kolmogorov's test in case of small sample sizes
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1968
SP  - 725
EP  - 730
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1968_13_4_a12/
LA  - ru
ID  - TVP_1968_13_4_a12
ER  - 
%0 Journal Article
%A V. A. Epanechnikov
%T The significance level and power of two-sided Kolmogorov's test in case of small sample sizes
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1968
%P 725-730
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1968_13_4_a12/
%G ru
%F TVP_1968_13_4_a12
V. A. Epanechnikov. The significance level and power of two-sided Kolmogorov's test in case of small sample sizes. Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 4, pp. 725-730. http://geodesic.mathdoc.fr/item/TVP_1968_13_4_a12/