The significance level and power of two-sided Kolmogorov's test in case of small sample sizes
Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 4, pp. 725-730
Voir la notice de l'article provenant de la source Math-Net.Ru
Calculating $n$-dimensional ($1\le n\infty$) integrals over a domain restricted by $(n+1)$-dimensional hyperplanes, we obtain a recurrent relation for the significance level $\beta_n$ and power $P_n$ of two-sided Kolmogorov's test which can be used to get exact values of $\beta_n$ and $P_n$ in case of small sample sizes.
@article{TVP_1968_13_4_a12,
author = {V. A. Epanechnikov},
title = {The significance level and power of two-sided {Kolmogorov's} test in case of small sample sizes},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {725--730},
publisher = {mathdoc},
volume = {13},
number = {4},
year = {1968},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1968_13_4_a12/}
}
TY - JOUR AU - V. A. Epanechnikov TI - The significance level and power of two-sided Kolmogorov's test in case of small sample sizes JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1968 SP - 725 EP - 730 VL - 13 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1968_13_4_a12/ LA - ru ID - TVP_1968_13_4_a12 ER -
V. A. Epanechnikov. The significance level and power of two-sided Kolmogorov's test in case of small sample sizes. Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 4, pp. 725-730. http://geodesic.mathdoc.fr/item/TVP_1968_13_4_a12/