Moments of random determinants
Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 4, pp. 720-725
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\Delta_n$ be a determinant with random elements $\xi_{ij}$, $i=1,\dots,n$, $j=1,,\dots,n$. In the paper the expectation $\mathbf E(\Delta_n)^2$ is calculated in case when all $\xi_{ij}$'s are independent and equally distributed. In case when $\xi_{ij}$'s are independent and equally distributed for $i\le j$, $i=1,\dots,n$, $j=1,\dots,n$, and $\xi_{ij}=\xi_{ji}$ we calculate $\mathbf E(\Delta_n)^2$ and $\mathbf E(\Delta_n)$ if $\mathbf E\xi_{ij}=0$ and $\mathbf E(\Delta_n)$ if $\mathbf(\xi_{ij})\ne0$.
@article{TVP_1968_13_4_a11,
author = {I. G. Zhurbenko},
title = {Moments of random determinants},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {720--725},
year = {1968},
volume = {13},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1968_13_4_a11/}
}
I. G. Zhurbenko. Moments of random determinants. Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 4, pp. 720-725. http://geodesic.mathdoc.fr/item/TVP_1968_13_4_a11/