Moments of random determinants
Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 4, pp. 720-725 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\Delta_n$ be a determinant with random elements $\xi_{ij}$, $i=1,\dots,n$, $j=1,,\dots,n$. In the paper the expectation $\mathbf E(\Delta_n)^2$ is calculated in case when all $\xi_{ij}$'s are independent and equally distributed. In case when $\xi_{ij}$'s are independent and equally distributed for $i\le j$, $i=1,\dots,n$, $j=1,\dots,n$, and $\xi_{ij}=\xi_{ji}$ we calculate $\mathbf E(\Delta_n)^2$ and $\mathbf E(\Delta_n)$ if $\mathbf E\xi_{ij}=0$ and $\mathbf E(\Delta_n)$ if $\mathbf(\xi_{ij})\ne0$.
@article{TVP_1968_13_4_a11,
     author = {I. G. Zhurbenko},
     title = {Moments of random determinants},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {720--725},
     year = {1968},
     volume = {13},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1968_13_4_a11/}
}
TY  - JOUR
AU  - I. G. Zhurbenko
TI  - Moments of random determinants
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1968
SP  - 720
EP  - 725
VL  - 13
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_1968_13_4_a11/
LA  - ru
ID  - TVP_1968_13_4_a11
ER  - 
%0 Journal Article
%A I. G. Zhurbenko
%T Moments of random determinants
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1968
%P 720-725
%V 13
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_1968_13_4_a11/
%G ru
%F TVP_1968_13_4_a11
I. G. Zhurbenko. Moments of random determinants. Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 4, pp. 720-725. http://geodesic.mathdoc.fr/item/TVP_1968_13_4_a11/