Nonlinear interpolation of components of diffusion Markov processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 4, pp. 602-620

Voir la notice de l'article provenant de la source Math-Net.Ru

A diffusion Markov process defined by the Ito equations (3) is considered. For the a posteriori probability densities $\pi_{\alpha\beta}(t,\tau)$, $\pi_\alpha(t,\tau)$, $0\le t\le\tau\le T$ defined in (2), differential equations in $\tau$ are deduced (see (21) and (13)). In §2 for the coefficients (31), it is shown that $\pi_\alpha(t,\tau)$ and $\pi_{\alpha\beta}(t,\tau)$ are Gaussian densities in $\alpha$ with parameters defined by (37), (38) and (65), (66).
@article{TVP_1968_13_4_a1,
     author = {R. Sh. Liptser and A. N. Shiryaev},
     title = {Nonlinear interpolation of components of diffusion {Markov} processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {602--620},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1968_13_4_a1/}
}
TY  - JOUR
AU  - R. Sh. Liptser
AU  - A. N. Shiryaev
TI  - Nonlinear interpolation of components of diffusion Markov processes
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1968
SP  - 602
EP  - 620
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1968_13_4_a1/
LA  - ru
ID  - TVP_1968_13_4_a1
ER  - 
%0 Journal Article
%A R. Sh. Liptser
%A A. N. Shiryaev
%T Nonlinear interpolation of components of diffusion Markov processes
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1968
%P 602-620
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1968_13_4_a1/
%G ru
%F TVP_1968_13_4_a1
R. Sh. Liptser; A. N. Shiryaev. Nonlinear interpolation of components of diffusion Markov processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 4, pp. 602-620. http://geodesic.mathdoc.fr/item/TVP_1968_13_4_a1/