Nonlinear interpolation of components of diffusion Markov processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 4, pp. 602-620
Cet article a éte moissonné depuis la source Math-Net.Ru
A diffusion Markov process defined by the Ito equations (3) is considered. For the a posteriori probability densities $\pi_{\alpha\beta}(t,\tau)$, $\pi_\alpha(t,\tau)$, $0\le t\le\tau\le T$ defined in (2), differential equations in $\tau$ are deduced (see (21) and (13)). In §2 for the coefficients (31), it is shown that $\pi_\alpha(t,\tau)$ and $\pi_{\alpha\beta}(t,\tau)$ are Gaussian densities in $\alpha$ with parameters defined by (37), (38) and (65), (66).
@article{TVP_1968_13_4_a1,
author = {R. Sh. Liptser and A. N. Shiryaev},
title = {Nonlinear interpolation of components of diffusion {Markov} processes},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {602--620},
year = {1968},
volume = {13},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1968_13_4_a1/}
}
R. Sh. Liptser; A. N. Shiryaev. Nonlinear interpolation of components of diffusion Markov processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 4, pp. 602-620. http://geodesic.mathdoc.fr/item/TVP_1968_13_4_a1/