On the first passage time of a given level for processes with independent increments
Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 3, pp. 471-478
Cet article a éte moissonné depuis la source Math-Net.Ru
The distribution of the first passage time of a non-negative level for a homogeneous process with independent increments $\xi(t)$ is studied, $\xi(t)$ having a bounded variation, and its characteristic function being of the form $\mathbf Me^{i\alpha\xi(t)}=e^{i\psi(\alpha)}$, where $$ \psi(\alpha)=i\alpha a+\int_{-\infty}^0(e^{i\alpha x}-1)\,dM(x)+\int_0^\infty(e^{i\alpha x}-1)\,dN(x). $$ The double transformation of the distribution considered is shown to be $$ \theta(s,\alpha)= \begin{cases} -\frac{\varkappa^+(s,0)}{\pi^+(s,\alpha)}&(a\le0), \\ -\frac1{1-i\alpha a}\cdot\frac{\varkappa^+(s,0)}{\varkappa^+(s,\alpha)}&(a>0), \end{cases} $$ where $\varkappa^+(s,\alpha)$ is determined by the factorization identity $$ \frac{s-\psi(\alpha)}{1-i\alpha a}=\varkappa^+(s,\alpha)\varkappa^-(s,\alpha)\quad(s>0,\ -\infty<\alpha<\infty). $$
@article{TVP_1968_13_3_a5,
author = {D. V. Gusak and V. S. Korolyuk},
title = {On the first passage time of a~given level for processes with independent increments},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {471--478},
year = {1968},
volume = {13},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1968_13_3_a5/}
}
TY - JOUR AU - D. V. Gusak AU - V. S. Korolyuk TI - On the first passage time of a given level for processes with independent increments JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1968 SP - 471 EP - 478 VL - 13 IS - 3 UR - http://geodesic.mathdoc.fr/item/TVP_1968_13_3_a5/ LA - ru ID - TVP_1968_13_3_a5 ER -
D. V. Gusak; V. S. Korolyuk. On the first passage time of a given level for processes with independent increments. Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 3, pp. 471-478. http://geodesic.mathdoc.fr/item/TVP_1968_13_3_a5/