Limit processes in a~model of unequal probabilities arrangement of particles in cells
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 3, pp. 534-542
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $n_1+n_2+\dots+n_t$ particles be arranged at random into $N$ cells, each of $n_m$ particles getting into the $k$-th cell with a probability $a_k^{(m)}$ ($k=1,2,\dots,N$; $m=1,2,\dots,t$). Let $\mu_0(n)$ be the number of empty cells after $n$ particles have been arranged. We regard $\mu_0(n)$ as a random function of the time parameter $n$, convergence of $\mu_0(n)$ to some– Gaussian or Poisson processes as $n$, $N\to\infty$ being proved.
			
            
            
            
          
        
      @article{TVP_1968_13_3_a17,
     author = {Yu. V. Bolotnikov},
     title = {Limit processes in a~model of unequal probabilities arrangement of particles in cells},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {534--542},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1968_13_3_a17/}
}
                      
                      
                    TY - JOUR AU - Yu. V. Bolotnikov TI - Limit processes in a~model of unequal probabilities arrangement of particles in cells JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1968 SP - 534 EP - 542 VL - 13 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1968_13_3_a17/ LA - ru ID - TVP_1968_13_3_a17 ER -
Yu. V. Bolotnikov. Limit processes in a~model of unequal probabilities arrangement of particles in cells. Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 3, pp. 534-542. http://geodesic.mathdoc.fr/item/TVP_1968_13_3_a17/
