Limit processes in a model of unequal probabilities arrangement of particles in cells
Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 3, pp. 534-542
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $n_1+n_2+\dots+n_t$ particles be arranged at random into $N$ cells, each of $n_m$ particles getting into the $k$-th cell with a probability $a_k^{(m)}$ ($k=1,2,\dots,N$; $m=1,2,\dots,t$). Let $\mu_0(n)$ be the number of empty cells after $n$ particles have been arranged. We regard $\mu_0(n)$ as a random function of the time parameter $n$, convergence of $\mu_0(n)$ to some– Gaussian or Poisson processes as $n$, $N\to\infty$ being proved.
@article{TVP_1968_13_3_a17,
author = {Yu. V. Bolotnikov},
title = {Limit processes in a~model of unequal probabilities arrangement of particles in cells},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {534--542},
year = {1968},
volume = {13},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1968_13_3_a17/}
}
Yu. V. Bolotnikov. Limit processes in a model of unequal probabilities arrangement of particles in cells. Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 3, pp. 534-542. http://geodesic.mathdoc.fr/item/TVP_1968_13_3_a17/