On a~property of a~sequence of events
Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 3, pp. 531-534

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\{A_n\}$ be a sequence of events and $\varlimsup\mathbf P(A_n)=p>0$. Then it is possible to choose for any $c1$ a subsequence with the property: for any $k$, the probability of the intersection of arbitrary $k$ events of the subsequence is more than $cp^k$. This statement becomes false if we replace the constant $c$ by a sequence $c_k\to1$.
@article{TVP_1968_13_3_a16,
     author = {M. I. Taksar},
     title = {On a~property of a~sequence of events},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {531--534},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1968_13_3_a16/}
}
TY  - JOUR
AU  - M. I. Taksar
TI  - On a~property of a~sequence of events
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1968
SP  - 531
EP  - 534
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1968_13_3_a16/
LA  - ru
ID  - TVP_1968_13_3_a16
ER  - 
%0 Journal Article
%A M. I. Taksar
%T On a~property of a~sequence of events
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1968
%P 531-534
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1968_13_3_a16/
%G ru
%F TVP_1968_13_3_a16
M. I. Taksar. On a~property of a~sequence of events. Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 3, pp. 531-534. http://geodesic.mathdoc.fr/item/TVP_1968_13_3_a16/