Unimprovability of the result due to N.\,A.~Sapogov in the stability problem of Cram\'er's theorem
Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 3, pp. 522-525
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the sequence (1) of compositions of distribution functions satisfying the condition (2). Let truncated variances of components be bounded from below by a positive constant. It is proved that the well-known estimate
$$
\max_{i=1,2}\inf_{G\in N}\sup_x|F_n^{(i)}(x)-G(x)|=O\biggl(\frac1{\sqrt{-\ln\varepsilon_n}}\biggr)
$$
(where $N$ is the set of all normal distribution functions) is unimprovable.
@article{TVP_1968_13_3_a14,
author = {S. G. Maloshevskii},
title = {Unimprovability of the result due to {N.\,A.~Sapogov} in the stability problem of {Cram\'er's} theorem},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {522--525},
publisher = {mathdoc},
volume = {13},
number = {3},
year = {1968},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1968_13_3_a14/}
}
TY - JOUR AU - S. G. Maloshevskii TI - Unimprovability of the result due to N.\,A.~Sapogov in the stability problem of Cram\'er's theorem JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1968 SP - 522 EP - 525 VL - 13 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1968_13_3_a14/ LA - ru ID - TVP_1968_13_3_a14 ER -
%0 Journal Article %A S. G. Maloshevskii %T Unimprovability of the result due to N.\,A.~Sapogov in the stability problem of Cram\'er's theorem %J Teoriâ veroâtnostej i ee primeneniâ %D 1968 %P 522-525 %V 13 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_1968_13_3_a14/ %G ru %F TVP_1968_13_3_a14
S. G. Maloshevskii. Unimprovability of the result due to N.\,A.~Sapogov in the stability problem of Cram\'er's theorem. Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 3, pp. 522-525. http://geodesic.mathdoc.fr/item/TVP_1968_13_3_a14/