Unimprovability of the result due to N. A. Sapogov in the stability problem of Cramér's theorem
Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 3, pp. 522-525
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider the sequence (1) of compositions of distribution functions satisfying the condition (2). Let truncated variances of components be bounded from below by a positive constant. It is proved that the well-known estimate $$ \max_{i=1,2}\inf_{G\in N}\sup_x|F_n^{(i)}(x)-G(x)|=O\biggl(\frac1{\sqrt{-\ln\varepsilon_n}}\biggr) $$ (where $N$ is the set of all normal distribution functions) is unimprovable.
@article{TVP_1968_13_3_a14,
author = {S. G. Maloshevskii},
title = {Unimprovability of the result due to {N.} {A.~Sapogov} in the stability problem of {Cram\'er's} theorem},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {522--525},
year = {1968},
volume = {13},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1968_13_3_a14/}
}
TY - JOUR AU - S. G. Maloshevskii TI - Unimprovability of the result due to N. A. Sapogov in the stability problem of Cramér's theorem JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1968 SP - 522 EP - 525 VL - 13 IS - 3 UR - http://geodesic.mathdoc.fr/item/TVP_1968_13_3_a14/ LA - ru ID - TVP_1968_13_3_a14 ER -
S. G. Maloshevskii. Unimprovability of the result due to N. A. Sapogov in the stability problem of Cramér's theorem. Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 3, pp. 522-525. http://geodesic.mathdoc.fr/item/TVP_1968_13_3_a14/