On random walk in Lobachevsky's plane
Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 3, pp. 512-517 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $M$ be the Lobachevsky's plane, $G$ its translation group and $mg$ the result of a translation $g\in G$ applied to a point $m\in M$. Consider a sequence $g_1,g_2,\dots,g_n,\dots$ of independent identically distributed random elements of $G$, a point $m_0\in M$ and the distribution $m_0\mu^n$ of the random point $m_0g_1\dots g_n$. Approximations of $m_0\mu^n(A)$ are considered, $A$ being a rather complicated subset of $M$ constructed by means of a discrete subgroup of $G$.
@article{TVP_1968_13_3_a12,
     author = {V. N. Tutubalin},
     title = {On random walk in {Lobachevsky's} plane},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {512--517},
     year = {1968},
     volume = {13},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1968_13_3_a12/}
}
TY  - JOUR
AU  - V. N. Tutubalin
TI  - On random walk in Lobachevsky's plane
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1968
SP  - 512
EP  - 517
VL  - 13
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_1968_13_3_a12/
LA  - ru
ID  - TVP_1968_13_3_a12
ER  - 
%0 Journal Article
%A V. N. Tutubalin
%T On random walk in Lobachevsky's plane
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1968
%P 512-517
%V 13
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_1968_13_3_a12/
%G ru
%F TVP_1968_13_3_a12
V. N. Tutubalin. On random walk in Lobachevsky's plane. Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 3, pp. 512-517. http://geodesic.mathdoc.fr/item/TVP_1968_13_3_a12/