On random walk in Lobachevsky's plane
Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 3, pp. 512-517
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $M$ be the Lobachevsky's plane, $G$ its translation group and $mg$ the result of a translation $g\in G$ applied to a point $m\in M$. Consider a sequence $g_1,g_2,\dots,g_n,\dots$ of independent identically distributed random elements of $G$, a point $m_0\in M$ and the distribution $m_0\mu^n$ of the random point $m_0g_1\dots g_n$. Approximations of $m_0\mu^n(A)$ are considered, $A$ being a rather complicated subset of $M$ constructed by means of a discrete subgroup of $G$.
@article{TVP_1968_13_3_a12,
author = {V. N. Tutubalin},
title = {On random walk in {Lobachevsky's} plane},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {512--517},
year = {1968},
volume = {13},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1968_13_3_a12/}
}
V. N. Tutubalin. On random walk in Lobachevsky's plane. Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 3, pp. 512-517. http://geodesic.mathdoc.fr/item/TVP_1968_13_3_a12/