A general solution of a problem in linear prediction of stationary processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 3, pp. 419-431
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\xi(t)$ and $\eta(t)$ be stationary in the wide sense processes, $\xi$ and $\eta$ being stationary connected. It is required to find the best linear prediction of a random variable $\xi(\tau)$, $\tau>0$, in terms of known values of $\xi(t)$ for $t\le0$ and $\eta(t)$ for $t\ge T$. In the paper a general solution of this problem is given.
@article{TVP_1968_13_3_a1,
author = {V. M. Adamyan and D. Z. Arov},
title = {A~general solution of a~problem in linear prediction of stationary processes},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {419--431},
year = {1968},
volume = {13},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1968_13_3_a1/}
}
TY - JOUR AU - V. M. Adamyan AU - D. Z. Arov TI - A general solution of a problem in linear prediction of stationary processes JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1968 SP - 419 EP - 431 VL - 13 IS - 3 UR - http://geodesic.mathdoc.fr/item/TVP_1968_13_3_a1/ LA - ru ID - TVP_1968_13_3_a1 ER -
V. M. Adamyan; D. Z. Arov. A general solution of a problem in linear prediction of stationary processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 3, pp. 419-431. http://geodesic.mathdoc.fr/item/TVP_1968_13_3_a1/