Confidence limits for the parameter $\lambda$ of a~complex stationary Gaussian Markovian process
Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 2, pp. 326-332
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\zeta(t)=\xi(t)+t\eta(t)$ be complex process satisfying the stochastic differential equation (1.1)
$$
d\zeta(t)=-\gamma\zeta(t)\,dt+d\chi(t),
$$
where $y=\lambda-i\omega$, $\chi(t)=\varphi(t)+i\psi(t)$, $\varphi$ and $\psi$ are independent Wiener processes. We get the characteristic function (2.2) of the sufficient statistics $s_1^2$, $Ts_2^2$ of the unknown parameter $\varkappa=\lambda T$. The quantiles of the distribution function of the maximum likelihood estimator $\widehat\varkappa=\widehat\lambda T$ (see (2.1)) at the levels $p=0.999$; $0.99$; $0.975$; $0.95$; $0.90$; $0.10$; $0.05$; $0.025$; $0.01$; $0.001$ are tabulated. From here we can get the confidence limits for the parameter $\varkappa=\lambda T$ ($0.1\varkappa\le100$).
@article{TVP_1968_13_2_a9,
author = {M. Arat\'o},
title = {Confidence limits for the parameter $\lambda$ of a~complex stationary {Gaussian} {Markovian} process},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {326--332},
publisher = {mathdoc},
volume = {13},
number = {2},
year = {1968},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1968_13_2_a9/}
}
TY - JOUR AU - M. Arató TI - Confidence limits for the parameter $\lambda$ of a~complex stationary Gaussian Markovian process JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1968 SP - 326 EP - 332 VL - 13 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1968_13_2_a9/ LA - ru ID - TVP_1968_13_2_a9 ER -
M. Arató. Confidence limits for the parameter $\lambda$ of a~complex stationary Gaussian Markovian process. Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 2, pp. 326-332. http://geodesic.mathdoc.fr/item/TVP_1968_13_2_a9/