Some remarks on multidimensional inegualities of the Bernstein--Kolmogorov type
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 2, pp. 289-294
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $X_1,\dots,X_n$ be independent random vectors in $R^m$ for which $\mathbf EX_i=0$ and $Y=X_1+\dots+X_n$. In the paper upper bounds of the type of the Bernstein–Kolmogorov inequalities are obtained for the probabilities $\mathbf P(|Y|\ge t)$ in case when the components of $X_i$'s form a Lévy martingale (in the sense of definition (3)) or when these vectors have spherical distributions. The orders of magnitude of the estimates obtained can not be improved.
			
            
            
            
          
        
      @article{TVP_1968_13_2_a5,
     author = {V. M. Zolotarev},
     title = {Some remarks on multidimensional inegualities of the {Bernstein--Kolmogorov} type},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {289--294},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1968_13_2_a5/}
}
                      
                      
                    TY - JOUR AU - V. M. Zolotarev TI - Some remarks on multidimensional inegualities of the Bernstein--Kolmogorov type JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1968 SP - 289 EP - 294 VL - 13 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1968_13_2_a5/ LA - ru ID - TVP_1968_13_2_a5 ER -
V. M. Zolotarev. Some remarks on multidimensional inegualities of the Bernstein--Kolmogorov type. Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 2, pp. 289-294. http://geodesic.mathdoc.fr/item/TVP_1968_13_2_a5/
