An extension of the S.\,N.~Bernstein inequalities to multidimensional distributions
Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 2, pp. 266-274
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $X_1,\dots,X_n,\dots$ be a sequence of identically distributed independent random vectors in $R^m$ and
$$
Y_n=\frac{X_1+\dots+X_n}{\sqrt n},
$$
Ir$\mathbf EX_j=0$, $|X_j|\le L$ and $n\ge m$, then
$$
\mathbf P\{|Y_n|\ge r\}\le Ce^{-\frac{kr^2}{L^2}}
$$
where
$$
c\le1+\frac{e^{5/12}}{\pi/\sqrt2},\quad k\ge\frac1{8e^2}.
$$
@article{TVP_1968_13_2_a3,
author = {Yu. V. Prokhorov},
title = {An extension of the {S.\,N.~Bernstein} inequalities to multidimensional distributions},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {266--274},
publisher = {mathdoc},
volume = {13},
number = {2},
year = {1968},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1968_13_2_a3/}
}
TY - JOUR AU - Yu. V. Prokhorov TI - An extension of the S.\,N.~Bernstein inequalities to multidimensional distributions JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1968 SP - 266 EP - 274 VL - 13 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1968_13_2_a3/ LA - ru ID - TVP_1968_13_2_a3 ER -
Yu. V. Prokhorov. An extension of the S.\,N.~Bernstein inequalities to multidimensional distributions. Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 2, pp. 266-274. http://geodesic.mathdoc.fr/item/TVP_1968_13_2_a3/