On factorization of a nonnegatively definite matrix
Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 2, pp. 375-378
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper conditions are given which are sufficient for the possibility of representation of a nonnegatively definite symmetrical matrix $a(x)$ in the form: $a(x)=\sigma(x)\cdot\sigma^*(x)$, where $\sigma(x)$ satisfies the Lipschitz condition.
@article{TVP_1968_13_2_a20,
author = {M. I. Freidlin},
title = {On factorization of a~nonnegatively definite matrix},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {375--378},
year = {1968},
volume = {13},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1968_13_2_a20/}
}
M. I. Freidlin. On factorization of a nonnegatively definite matrix. Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 2, pp. 375-378. http://geodesic.mathdoc.fr/item/TVP_1968_13_2_a20/