On factorization of a~nonnegatively definite matrix
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 2, pp. 375-378
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper conditions are given which are sufficient for the possibility of representation of a nonnegatively definite symmetrical matrix $a(x)$ in the form: $a(x)=\sigma(x)\cdot\sigma^*(x)$, where $\sigma(x)$ satisfies the Lipschitz condition.
			
            
            
            
          
        
      @article{TVP_1968_13_2_a20,
     author = {M. I. Freidlin},
     title = {On factorization of a~nonnegatively definite matrix},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {375--378},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1968_13_2_a20/}
}
                      
                      
                    M. I. Freidlin. On factorization of a~nonnegatively definite matrix. Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 2, pp. 375-378. http://geodesic.mathdoc.fr/item/TVP_1968_13_2_a20/
