On factorization of a~nonnegatively definite matrix
Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 2, pp. 375-378

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper conditions are given which are sufficient for the possibility of representation of a nonnegatively definite symmetrical matrix $a(x)$ in the form: $a(x)=\sigma(x)\cdot\sigma^*(x)$, where $\sigma(x)$ satisfies the Lipschitz condition.
@article{TVP_1968_13_2_a20,
     author = {M. I. Freidlin},
     title = {On factorization of a~nonnegatively definite matrix},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {375--378},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1968_13_2_a20/}
}
TY  - JOUR
AU  - M. I. Freidlin
TI  - On factorization of a~nonnegatively definite matrix
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1968
SP  - 375
EP  - 378
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1968_13_2_a20/
LA  - ru
ID  - TVP_1968_13_2_a20
ER  - 
%0 Journal Article
%A M. I. Freidlin
%T On factorization of a~nonnegatively definite matrix
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1968
%P 375-378
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1968_13_2_a20/
%G ru
%F TVP_1968_13_2_a20
M. I. Freidlin. On factorization of a~nonnegatively definite matrix. Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 2, pp. 375-378. http://geodesic.mathdoc.fr/item/TVP_1968_13_2_a20/