The problem of the distribution of the maximal queue size and its application
Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 2, pp. 366-375
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we deal with the system $GI/M/1$. Let $\tau_n$ be the first time when the size of the queue equals $n$. An expression for $\mathbf Me^{-s\tau}n$ is obtained and the asymptotic behaviour of $\mathbf M\tau_n$ as $n\to\infty$ is studied. We prove also limit theorems for $\tau_n/\mathbf M\tau_n$ ($n\to\infty$). These results enable to analyse the system which has at most $n$ customers simultaneously.
@article{TVP_1968_13_2_a19,
author = {O. P. Vinogradov},
title = {The problem of the distribution of the maximal queue size and its application},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {366--375},
publisher = {mathdoc},
volume = {13},
number = {2},
year = {1968},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1968_13_2_a19/}
}
TY - JOUR AU - O. P. Vinogradov TI - The problem of the distribution of the maximal queue size and its application JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1968 SP - 366 EP - 375 VL - 13 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1968_13_2_a19/ LA - ru ID - TVP_1968_13_2_a19 ER -
O. P. Vinogradov. The problem of the distribution of the maximal queue size and its application. Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 2, pp. 366-375. http://geodesic.mathdoc.fr/item/TVP_1968_13_2_a19/