Probabilities of complex events and the linear programming
Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 2, pp. 344-347

Voir la notice de l'article provenant de la source Math-Net.Ru

The following two extremal problems are solved in the paper by methods of the linear programming. A. Let $\varepsilon\le1$ be a fixed positive number. Call the distance $\rho(A,B)$ between two events $A$ and $В$ the measure of their symmetrical difference. How many events with mutual distances not less than $\varepsilon$ can be constructed? B. Let $k$ be fixed integers and $0$. For what $c$ is it possible to choose $k$ events with the probability of their intersection not less than $c$ from every $n$ events with the probabilities not less than $p$? The second problem was investigated in [1] by a different method. We reduce both the problems to finding of extrema of some linear forms on rather simple convex polyhedrons.
@article{TVP_1968_13_2_a13,
     author = {S. A. Pirogov},
     title = {Probabilities of complex events and the linear programming},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {344--347},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1968_13_2_a13/}
}
TY  - JOUR
AU  - S. A. Pirogov
TI  - Probabilities of complex events and the linear programming
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1968
SP  - 344
EP  - 347
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1968_13_2_a13/
LA  - ru
ID  - TVP_1968_13_2_a13
ER  - 
%0 Journal Article
%A S. A. Pirogov
%T Probabilities of complex events and the linear programming
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1968
%P 344-347
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1968_13_2_a13/
%G ru
%F TVP_1968_13_2_a13
S. A. Pirogov. Probabilities of complex events and the linear programming. Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 2, pp. 344-347. http://geodesic.mathdoc.fr/item/TVP_1968_13_2_a13/