On the number of boundary out-crossings of a~region by a~vector stochastic process
Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 2, pp. 333-337
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that under some restrictions (see the conditions $C_\Phi$, $C_\xi$, $C_{\xi\xi}$) the moments of the number of crossing of a set $\Gamma$ with a smooth boundary $S_\Phi=\{\mathbf x\colon\Phi(\mathbf x)=0\}$. $\mathbf x\in R^m$, by a continually differentiable vector stochastic process $\xi_i$ can be found explicitly. For example, the intensity $\mu^+(\Gamma,t)$ of the number of out-crossings of $\Gamma$ from the region $\Phi(x)0$ at time $t$ is expressed by a surface integral of the first kind:
$$
\mu^+(\Gamma,t)=\int_{x\in\Gamma}\mathbf M\{(\mathbf n_\Phi(\mathbf x)'\xi_t)^+\mid\xi_t'=\mathbf x\}p_t(\mathbf x)\,ds(\mathbf x).
$$
At the end of the paper examples are given, which illustrate advantages of the obtained formulas.
@article{TVP_1968_13_2_a10,
author = {Yu. K. Belyaev},
title = {On the number of boundary out-crossings of a~region by a~vector stochastic process},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {333--337},
publisher = {mathdoc},
volume = {13},
number = {2},
year = {1968},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1968_13_2_a10/}
}
TY - JOUR AU - Yu. K. Belyaev TI - On the number of boundary out-crossings of a~region by a~vector stochastic process JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1968 SP - 333 EP - 337 VL - 13 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1968_13_2_a10/ LA - ru ID - TVP_1968_13_2_a10 ER -
Yu. K. Belyaev. On the number of boundary out-crossings of a~region by a~vector stochastic process. Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 2, pp. 333-337. http://geodesic.mathdoc.fr/item/TVP_1968_13_2_a10/