On the number of boundary out-crossings of a~region by a~vector stochastic process
Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 2, pp. 333-337

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that under some restrictions (see the conditions $C_\Phi$, $C_\xi$, $C_{\xi\xi}$) the moments of the number of crossing of a set $\Gamma$ with a smooth boundary $S_\Phi=\{\mathbf x\colon\Phi(\mathbf x)=0\}$. $\mathbf x\in R^m$, by a continually differentiable vector stochastic process $\xi_i$ can be found explicitly. For example, the intensity $\mu^+(\Gamma,t)$ of the number of out-crossings of $\Gamma$ from the region $\Phi(x)0$ at time $t$ is expressed by a surface integral of the first kind: $$ \mu^+(\Gamma,t)=\int_{x\in\Gamma}\mathbf M\{(\mathbf n_\Phi(\mathbf x)'\xi_t)^+\mid\xi_t'=\mathbf x\}p_t(\mathbf x)\,ds(\mathbf x). $$ At the end of the paper examples are given, which illustrate advantages of the obtained formulas.
@article{TVP_1968_13_2_a10,
     author = {Yu. K. Belyaev},
     title = {On the number of boundary out-crossings of a~region by a~vector stochastic process},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {333--337},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1968_13_2_a10/}
}
TY  - JOUR
AU  - Yu. K. Belyaev
TI  - On the number of boundary out-crossings of a~region by a~vector stochastic process
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1968
SP  - 333
EP  - 337
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1968_13_2_a10/
LA  - ru
ID  - TVP_1968_13_2_a10
ER  - 
%0 Journal Article
%A Yu. K. Belyaev
%T On the number of boundary out-crossings of a~region by a~vector stochastic process
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1968
%P 333-337
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1968_13_2_a10/
%G ru
%F TVP_1968_13_2_a10
Yu. K. Belyaev. On the number of boundary out-crossings of a~region by a~vector stochastic process. Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 2, pp. 333-337. http://geodesic.mathdoc.fr/item/TVP_1968_13_2_a10/