On verifiable functions
Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 1, pp. 96-113
Voir la notice de l'article provenant de la source Math-Net.Ru
The Linnik concept of verifiable functions is investigated in the case of normal distribution $N(\xi,\sigma^2)$. The question of verifiability of some analytic function $f$ is reduced by a method of complexification to that of its $C$-verifiability. A function $f(\xi,\sigma^2)$ is called $C$-verifiable if there exists a non-constant critical function $\varphi$ with power depending on complex $\xi$ and $\sigma^2$ ($\operatorname{Re}\sigma^2$) only through $f$. The paper also contains some necessary conditions for $f$ to be $C$-verifiable or verifiable in the Linnik sense.
@article{TVP_1968_13_1_a6,
author = {V. P. Palamodov},
title = {On verifiable functions},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {96--113},
publisher = {mathdoc},
volume = {13},
number = {1},
year = {1968},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1968_13_1_a6/}
}
V. P. Palamodov. On verifiable functions. Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 1, pp. 96-113. http://geodesic.mathdoc.fr/item/TVP_1968_13_1_a6/