On verifiable functions
Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 1, pp. 96-113

Voir la notice de l'article provenant de la source Math-Net.Ru

The Linnik concept of verifiable functions is investigated in the case of normal distribution $N(\xi,\sigma^2)$. The question of verifiability of some analytic function $f$ is reduced by a method of complexification to that of its $C$-verifiability. A function $f(\xi,\sigma^2)$ is called $C$-verifiable if there exists a non-constant critical function $\varphi$ with power depending on complex $\xi$ and $\sigma^2$ ($\operatorname{Re}\sigma^2$) only through $f$. The paper also contains some necessary conditions for $f$ to be $C$-verifiable or verifiable in the Linnik sense.
@article{TVP_1968_13_1_a6,
     author = {V. P. Palamodov},
     title = {On verifiable functions},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {96--113},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1968_13_1_a6/}
}
TY  - JOUR
AU  - V. P. Palamodov
TI  - On verifiable functions
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1968
SP  - 96
EP  - 113
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1968_13_1_a6/
LA  - ru
ID  - TVP_1968_13_1_a6
ER  - 
%0 Journal Article
%A V. P. Palamodov
%T On verifiable functions
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1968
%P 96-113
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1968_13_1_a6/
%G ru
%F TVP_1968_13_1_a6
V. P. Palamodov. On verifiable functions. Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 1, pp. 96-113. http://geodesic.mathdoc.fr/item/TVP_1968_13_1_a6/