Approximation of probability measures in variation and products of random matrices
Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 1, pp. 63-81

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be the group of real unimodular matrices, $U$ its orthogonal subgroup, $D$ its diagonal subgroup, $g_1,g_2,\dots,g_n,\dots$ a sequence of independent equally distributed random elements of $G$, $g(n)=g_1g_2\dots g_n$. A method is given to approximate the distribution $\mu^n$ of $g(n)$ by a simpler measure $\mu_n$ such that $\operatorname{var}(\mu^n-\widetilde\mu_n)\to0$ as $n\to\infty$. Let $$ g(N)=u_1(n)d(n)u_2(n),\quad u_1(n)\in U,\quad d(n)\in D,\quad u_2(n)\in U $$ Approximations of distributions of $u_1(n)$, $d(n)$ and $u_2(n)$ are given. The joint distribution of these random variables can be approximated as if $u_1(n)$, $d(n)$ and $u_2(n)$ be independent. A conclusion is deduced that the coordinate system $(u_1,d,u_2)$ in $G$ is appropriate to approximate the distribution of $g(n)$. The most general system (coordinates of a matrix are its elements) however appears not to be a good one for this purpose.
@article{TVP_1968_13_1_a4,
     author = {V. N. Tutubalin},
     title = {Approximation of probability measures in variation and products of random matrices},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {63--81},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1968_13_1_a4/}
}
TY  - JOUR
AU  - V. N. Tutubalin
TI  - Approximation of probability measures in variation and products of random matrices
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1968
SP  - 63
EP  - 81
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1968_13_1_a4/
LA  - ru
ID  - TVP_1968_13_1_a4
ER  - 
%0 Journal Article
%A V. N. Tutubalin
%T Approximation of probability measures in variation and products of random matrices
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1968
%P 63-81
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1968_13_1_a4/
%G ru
%F TVP_1968_13_1_a4
V. N. Tutubalin. Approximation of probability measures in variation and products of random matrices. Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 1, pp. 63-81. http://geodesic.mathdoc.fr/item/TVP_1968_13_1_a4/