Convergence of the variables $\mu_r(n)$ to Gaussian and Poisson processes in the classical problem with balls
Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 1, pp. 39-50

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $n$ balls be distributed at random in $N$ boxes. Each ball may fall into any box with the same probability $1/N$ independently of the others. Let $\mu_r(n)$ be the number of boxes which contain exactly $r$ balls $(r=1,2,\dots)$. We consider $\mu_r(n)$ as a random function of the time parameter $n$. In this paper we prove that the random function $\mu_r(n)$ converges to some Gaussian or Poisson process as $n$, $N\to\infty$.
@article{TVP_1968_13_1_a2,
     author = {Yu. V. Bolotnikov},
     title = {Convergence of the variables $\mu_r(n)$ to {Gaussian} and {Poisson} processes in the classical problem with balls},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {39--50},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1968_13_1_a2/}
}
TY  - JOUR
AU  - Yu. V. Bolotnikov
TI  - Convergence of the variables $\mu_r(n)$ to Gaussian and Poisson processes in the classical problem with balls
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1968
SP  - 39
EP  - 50
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1968_13_1_a2/
LA  - ru
ID  - TVP_1968_13_1_a2
ER  - 
%0 Journal Article
%A Yu. V. Bolotnikov
%T Convergence of the variables $\mu_r(n)$ to Gaussian and Poisson processes in the classical problem with balls
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1968
%P 39-50
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1968_13_1_a2/
%G ru
%F TVP_1968_13_1_a2
Yu. V. Bolotnikov. Convergence of the variables $\mu_r(n)$ to Gaussian and Poisson processes in the classical problem with balls. Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 1, pp. 39-50. http://geodesic.mathdoc.fr/item/TVP_1968_13_1_a2/