On connection between the local and integral theorems for latticed distributions
Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 1, pp. 175-179

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper a sequence of independent integer random variables is constructed which satisfies the integral limit theorem, is asymptotically uniformly distributed and has the infinite smallness property, but the local theorem fails to be valid for it. Thus Yu. V. Prohorov's hypothesis that the conditions enumerated be sufficient for the local theorem is refuted.
@article{TVP_1968_13_1_a16,
     author = {N. G. Gamkrelidze},
     title = {On connection between the local and integral theorems for latticed distributions},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {175--179},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1968_13_1_a16/}
}
TY  - JOUR
AU  - N. G. Gamkrelidze
TI  - On connection between the local and integral theorems for latticed distributions
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1968
SP  - 175
EP  - 179
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1968_13_1_a16/
LA  - ru
ID  - TVP_1968_13_1_a16
ER  - 
%0 Journal Article
%A N. G. Gamkrelidze
%T On connection between the local and integral theorems for latticed distributions
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1968
%P 175-179
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1968_13_1_a16/
%G ru
%F TVP_1968_13_1_a16
N. G. Gamkrelidze. On connection between the local and integral theorems for latticed distributions. Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 1, pp. 175-179. http://geodesic.mathdoc.fr/item/TVP_1968_13_1_a16/