On connection between the local and integral theorems for latticed distributions
Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 1, pp. 175-179
Voir la notice de l'article provenant de la source Math-Net.Ru
In the present paper a sequence of independent integer random variables is constructed which satisfies the integral limit theorem, is asymptotically uniformly distributed and has the infinite smallness property, but the local theorem fails to be valid for it. Thus Yu. V. Prohorov's hypothesis that the conditions enumerated be sufficient for the local theorem is refuted.
@article{TVP_1968_13_1_a16,
author = {N. G. Gamkrelidze},
title = {On connection between the local and integral theorems for latticed distributions},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {175--179},
publisher = {mathdoc},
volume = {13},
number = {1},
year = {1968},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1968_13_1_a16/}
}
TY - JOUR AU - N. G. Gamkrelidze TI - On connection between the local and integral theorems for latticed distributions JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1968 SP - 175 EP - 179 VL - 13 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1968_13_1_a16/ LA - ru ID - TVP_1968_13_1_a16 ER -
N. G. Gamkrelidze. On connection between the local and integral theorems for latticed distributions. Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 1, pp. 175-179. http://geodesic.mathdoc.fr/item/TVP_1968_13_1_a16/