An estimation of a~convergence rate for the absorption probability in case of a~null expectation
Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 1, pp. 160-164

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\xi_1,\xi_2,\dots$ be a sequence of mutually independent equally distributed random variables with a distribution function $F_\lambda(x)$ depending on a parameter $\lambda$. Let $\mathbf M\xi_1^2=2\lambda^2$ and $\mathbf M\xi_1=0$. Define $n_x$ as the least integer for which $\zeta_n+x\notin(a,b)$, where $\zeta_n=\sum_{i=1}^n\xi_i$ and $(a,b)$ is a finite interval of the real line. Put $$ P_\lambda(x)=\mathbf P\{\zeta_{n_x}+x\ge b\},\quad x\in(a,b), $$ and $$ c_{3\lambda}=\mathbf M|\xi_1|^3. $$ The following assertion is proved: there exists an absolute constant $L$ such that $$ \sup_{a}\biggl|P_\lambda(x)-\frac{x-a}{b-a}\biggr|\frac{c_{3\lambda}}{\lambda^2(b-a)}. $$
@article{TVP_1968_13_1_a13,
     author = {S. V. Nagaev},
     title = {An estimation of a~convergence rate for the absorption probability in case of a~null expectation},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {160--164},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1968_13_1_a13/}
}
TY  - JOUR
AU  - S. V. Nagaev
TI  - An estimation of a~convergence rate for the absorption probability in case of a~null expectation
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1968
SP  - 160
EP  - 164
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1968_13_1_a13/
LA  - ru
ID  - TVP_1968_13_1_a13
ER  - 
%0 Journal Article
%A S. V. Nagaev
%T An estimation of a~convergence rate for the absorption probability in case of a~null expectation
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1968
%P 160-164
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1968_13_1_a13/
%G ru
%F TVP_1968_13_1_a13
S. V. Nagaev. An estimation of a~convergence rate for the absorption probability in case of a~null expectation. Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 1, pp. 160-164. http://geodesic.mathdoc.fr/item/TVP_1968_13_1_a13/