An estimation of a~convergence rate for the absorption probability in case of a~null expectation
Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 1, pp. 160-164
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\xi_1,\xi_2,\dots$ be a sequence of mutually independent equally distributed random variables with a distribution function $F_\lambda(x)$ depending on a parameter $\lambda$. Let $\mathbf M\xi_1^2=2\lambda^2$ and $\mathbf M\xi_1=0$. Define $n_x$ as the least integer for which $\zeta_n+x\notin(a,b)$, where $\zeta_n=\sum_{i=1}^n\xi_i$ and $(a,b)$ is a finite interval of the real line. Put
$$
P_\lambda(x)=\mathbf P\{\zeta_{n_x}+x\ge b\},\quad x\in(a,b),
$$
and
$$
c_{3\lambda}=\mathbf M|\xi_1|^3.
$$
The following assertion is proved: there exists an absolute constant $L$ such that
$$
\sup_{a}\biggl|P_\lambda(x)-\frac{x-a}{b-a}\biggr|\frac{c_{3\lambda}}{\lambda^2(b-a)}.
$$
@article{TVP_1968_13_1_a13,
author = {S. V. Nagaev},
title = {An estimation of a~convergence rate for the absorption probability in case of a~null expectation},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {160--164},
publisher = {mathdoc},
volume = {13},
number = {1},
year = {1968},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1968_13_1_a13/}
}
TY - JOUR AU - S. V. Nagaev TI - An estimation of a~convergence rate for the absorption probability in case of a~null expectation JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1968 SP - 160 EP - 164 VL - 13 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1968_13_1_a13/ LA - ru ID - TVP_1968_13_1_a13 ER -
S. V. Nagaev. An estimation of a~convergence rate for the absorption probability in case of a~null expectation. Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 1, pp. 160-164. http://geodesic.mathdoc.fr/item/TVP_1968_13_1_a13/