Extrapolation of multidimensional Markov processes from incomplete data
Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 1, pp. 17-38
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $(\theta_t,\eta_t)$, $t\ge0$, be a Markov process, where $\eta_t$ is the observable component and $\theta_t$ is the unobservable one. Put $$ \pi_\beta(\tau,t)=\mathbf P(\theta_\tau=\beta\mid\eta_s,\ s\le t),\quad\tau\ge t, $$ if $\theta_t$ takes discrete values and $$ \pi_\beta(\tau,t)=\frac{\partial\mathbf P(\theta_t\le\beta\mid\eta_s,\ s\le t)}{\partial\beta},\quad\tau\ge t, $$ if $\theta_\tau$ takes continuous values. When $\theta_t$, $t\ge0$, is a purely discontinuous Markov process and $\eta_t$ has the stochastic differential (5), in § 1 equations in $t$ and $\tau$ for $\pi_\beta(\tau,t)$ are deduced. In § 2 equations for the density $\pi_\beta(\tau,t)$ are obtained under the supposition that $(\theta_t,\eta_t)$ be a diffusion Markov process. In § 3 some cases of effective solving of extrapolation problems for processes regarded in § 2 are considered.
@article{TVP_1968_13_1_a1,
author = {R. Sh. Liptser and A. N. Shiryaev},
title = {Extrapolation of multidimensional {Markov} processes from incomplete data},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {17--38},
year = {1968},
volume = {13},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1968_13_1_a1/}
}
R. Sh. Liptser; A. N. Shiryaev. Extrapolation of multidimensional Markov processes from incomplete data. Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 1, pp. 17-38. http://geodesic.mathdoc.fr/item/TVP_1968_13_1_a1/